Metamath Proof Explorer


Theorem slmdsn0

Description: The set of scalars in a semimodule is nonempty. (Contributed by Thierry Arnoux, 1-Apr-2018) (Proof shortened by AV, 10-Jan-2023)

Ref Expression
Hypotheses slmdsn0.f
|- F = ( Scalar ` W )
slmdsn0.b
|- B = ( Base ` F )
Assertion slmdsn0
|- ( W e. SLMod -> B =/= (/) )

Proof

Step Hyp Ref Expression
1 slmdsn0.f
 |-  F = ( Scalar ` W )
2 slmdsn0.b
 |-  B = ( Base ` F )
3 1 slmdsrg
 |-  ( W e. SLMod -> F e. SRing )
4 srgmnd
 |-  ( F e. SRing -> F e. Mnd )
5 2 mndbn0
 |-  ( F e. Mnd -> B =/= (/) )
6 3 4 5 3syl
 |-  ( W e. SLMod -> B =/= (/) )