Description: The set of scalars in a semimodule is nonempty. (Contributed by Thierry Arnoux, 1-Apr-2018) (Proof shortened by AV, 10-Jan-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | slmdsn0.f | |- F = ( Scalar ` W ) | |
| slmdsn0.b | |- B = ( Base ` F ) | ||
| Assertion | slmdsn0 | |- ( W e. SLMod -> B =/= (/) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | slmdsn0.f | |- F = ( Scalar ` W ) | |
| 2 | slmdsn0.b | |- B = ( Base ` F ) | |
| 3 | 1 | slmdsrg | |- ( W e. SLMod -> F e. SRing ) | 
| 4 | srgmnd | |- ( F e. SRing -> F e. Mnd ) | |
| 5 | 2 | mndbn0 | |- ( F e. Mnd -> B =/= (/) ) | 
| 6 | 3 4 5 | 3syl | |- ( W e. SLMod -> B =/= (/) ) |