Metamath Proof Explorer


Theorem slmdacl

Description: Closure of ring addition for a semimodule. (Contributed by Thierry Arnoux, 1-Apr-2018)

Ref Expression
Hypotheses slmdacl.f F = Scalar W
slmdacl.k K = Base F
slmdacl.p + ˙ = + F
Assertion slmdacl W SLMod X K Y K X + ˙ Y K

Proof

Step Hyp Ref Expression
1 slmdacl.f F = Scalar W
2 slmdacl.k K = Base F
3 slmdacl.p + ˙ = + F
4 1 slmdsrg W SLMod F SRing
5 srgmnd F SRing F Mnd
6 4 5 syl W SLMod F Mnd
7 2 3 mndcl F Mnd X K Y K X + ˙ Y K
8 6 7 syl3an1 W SLMod X K Y K X + ˙ Y K