Metamath Proof Explorer


Theorem slmdsrg

Description: The scalar component of a semimodule is a semiring. (Contributed by NM, 8-Dec-2013) (Revised by Mario Carneiro, 19-Jun-2014) (Revised by Thierry Arnoux, 1-Apr-2018)

Ref Expression
Hypothesis slmdsrg.1 F = Scalar W
Assertion slmdsrg W SLMod F SRing

Proof

Step Hyp Ref Expression
1 slmdsrg.1 F = Scalar W
2 eqid Base W = Base W
3 eqid + W = + W
4 eqid W = W
5 eqid 0 W = 0 W
6 eqid Base F = Base F
7 eqid + F = + F
8 eqid F = F
9 eqid 1 F = 1 F
10 eqid 0 F = 0 F
11 2 3 4 5 1 6 7 8 9 10 isslmd W SLMod W CMnd F SRing w Base F z Base F x Base W y Base W z W y Base W z W y + W x = z W y + W z W x w + F z W y = w W y + W z W y w F z W y = w W z W y 1 F W y = y 0 F W y = 0 W
12 11 simp2bi W SLMod F SRing