Metamath Proof Explorer


Theorem slmdsrg

Description: The scalar component of a semimodule is a semiring. (Contributed by NM, 8-Dec-2013) (Revised by Mario Carneiro, 19-Jun-2014) (Revised by Thierry Arnoux, 1-Apr-2018)

Ref Expression
Hypothesis slmdsrg.1 F=ScalarW
Assertion slmdsrg WSLModFSRing

Proof

Step Hyp Ref Expression
1 slmdsrg.1 F=ScalarW
2 eqid BaseW=BaseW
3 eqid +W=+W
4 eqid W=W
5 eqid 0W=0W
6 eqid BaseF=BaseF
7 eqid +F=+F
8 eqid F=F
9 eqid 1F=1F
10 eqid 0F=0F
11 2 3 4 5 1 6 7 8 9 10 isslmd WSLModWCMndFSRingwBaseFzBaseFxBaseWyBaseWzWyBaseWzWy+Wx=zWy+WzWxw+FzWy=wWy+WzWywFzWy=wWzWy1FWy=y0FWy=0W
12 11 simp2bi WSLModFSRing