Metamath Proof Explorer


Theorem slmdbn0

Description: The base set of a semimodule is nonempty. (Contributed by Thierry Arnoux, 1-Apr-2018) (Proof shortened by AV, 10-Jan-2023)

Ref Expression
Hypothesis slmdbn0.b B = Base W
Assertion slmdbn0 W SLMod B

Proof

Step Hyp Ref Expression
1 slmdbn0.b B = Base W
2 slmdmnd W SLMod W Mnd
3 1 mndbn0 W Mnd B
4 2 3 syl W SLMod B