Metamath Proof Explorer


Theorem slmdbn0

Description: The base set of a semimodule is nonempty. (Contributed by Thierry Arnoux, 1-Apr-2018) (Proof shortened by AV, 10-Jan-2023)

Ref Expression
Hypothesis slmdbn0.b
|- B = ( Base ` W )
Assertion slmdbn0
|- ( W e. SLMod -> B =/= (/) )

Proof

Step Hyp Ref Expression
1 slmdbn0.b
 |-  B = ( Base ` W )
2 slmdmnd
 |-  ( W e. SLMod -> W e. Mnd )
3 1 mndbn0
 |-  ( W e. Mnd -> B =/= (/) )
4 2 3 syl
 |-  ( W e. SLMod -> B =/= (/) )