Description: Right identity law for the zero vector. ( ax-hvaddid analog.) (Contributed by NM, 10-Jan-2014) (Revised by Mario Carneiro, 19-Jun-2014) (Revised by Thierry Arnoux, 1-Apr-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | slmd0vlid.v | |- V = ( Base ` W ) |
|
| slmd0vlid.a | |- .+ = ( +g ` W ) |
||
| slmd0vlid.z | |- .0. = ( 0g ` W ) |
||
| Assertion | slmd0vrid | |- ( ( W e. SLMod /\ X e. V ) -> ( X .+ .0. ) = X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | slmd0vlid.v | |- V = ( Base ` W ) |
|
| 2 | slmd0vlid.a | |- .+ = ( +g ` W ) |
|
| 3 | slmd0vlid.z | |- .0. = ( 0g ` W ) |
|
| 4 | slmdmnd | |- ( W e. SLMod -> W e. Mnd ) |
|
| 5 | 1 2 3 | mndrid | |- ( ( W e. Mnd /\ X e. V ) -> ( X .+ .0. ) = X ) |
| 6 | 4 5 | sylan | |- ( ( W e. SLMod /\ X e. V ) -> ( X .+ .0. ) = X ) |