| Step |
Hyp |
Ref |
Expression |
| 1 |
|
slmd0vs.v |
|- V = ( Base ` W ) |
| 2 |
|
slmd0vs.f |
|- F = ( Scalar ` W ) |
| 3 |
|
slmd0vs.s |
|- .x. = ( .s ` W ) |
| 4 |
|
slmd0vs.o |
|- O = ( 0g ` F ) |
| 5 |
|
slmd0vs.z |
|- .0. = ( 0g ` W ) |
| 6 |
|
simpl |
|- ( ( W e. SLMod /\ X e. V ) -> W e. SLMod ) |
| 7 |
|
eqid |
|- ( Base ` F ) = ( Base ` F ) |
| 8 |
2 7 4
|
slmd0cl |
|- ( W e. SLMod -> O e. ( Base ` F ) ) |
| 9 |
8
|
adantr |
|- ( ( W e. SLMod /\ X e. V ) -> O e. ( Base ` F ) ) |
| 10 |
|
simpr |
|- ( ( W e. SLMod /\ X e. V ) -> X e. V ) |
| 11 |
|
eqid |
|- ( +g ` W ) = ( +g ` W ) |
| 12 |
|
eqid |
|- ( +g ` F ) = ( +g ` F ) |
| 13 |
|
eqid |
|- ( .r ` F ) = ( .r ` F ) |
| 14 |
|
eqid |
|- ( 1r ` F ) = ( 1r ` F ) |
| 15 |
1 11 3 5 2 7 12 13 14 4
|
slmdlema |
|- ( ( W e. SLMod /\ ( O e. ( Base ` F ) /\ O e. ( Base ` F ) ) /\ ( X e. V /\ X e. V ) ) -> ( ( ( O .x. X ) e. V /\ ( O .x. ( X ( +g ` W ) X ) ) = ( ( O .x. X ) ( +g ` W ) ( O .x. X ) ) /\ ( ( O ( +g ` F ) O ) .x. X ) = ( ( O .x. X ) ( +g ` W ) ( O .x. X ) ) ) /\ ( ( ( O ( .r ` F ) O ) .x. X ) = ( O .x. ( O .x. X ) ) /\ ( ( 1r ` F ) .x. X ) = X /\ ( O .x. X ) = .0. ) ) ) |
| 16 |
6 9 9 10 10 15
|
syl122anc |
|- ( ( W e. SLMod /\ X e. V ) -> ( ( ( O .x. X ) e. V /\ ( O .x. ( X ( +g ` W ) X ) ) = ( ( O .x. X ) ( +g ` W ) ( O .x. X ) ) /\ ( ( O ( +g ` F ) O ) .x. X ) = ( ( O .x. X ) ( +g ` W ) ( O .x. X ) ) ) /\ ( ( ( O ( .r ` F ) O ) .x. X ) = ( O .x. ( O .x. X ) ) /\ ( ( 1r ` F ) .x. X ) = X /\ ( O .x. X ) = .0. ) ) ) |
| 17 |
16
|
simprd |
|- ( ( W e. SLMod /\ X e. V ) -> ( ( ( O ( .r ` F ) O ) .x. X ) = ( O .x. ( O .x. X ) ) /\ ( ( 1r ` F ) .x. X ) = X /\ ( O .x. X ) = .0. ) ) |
| 18 |
17
|
simp3d |
|- ( ( W e. SLMod /\ X e. V ) -> ( O .x. X ) = .0. ) |