| Step | Hyp | Ref | Expression | 
						
							| 1 |  | slmd0vs.v |  |-  V = ( Base ` W ) | 
						
							| 2 |  | slmd0vs.f |  |-  F = ( Scalar ` W ) | 
						
							| 3 |  | slmd0vs.s |  |-  .x. = ( .s ` W ) | 
						
							| 4 |  | slmd0vs.o |  |-  O = ( 0g ` F ) | 
						
							| 5 |  | slmd0vs.z |  |-  .0. = ( 0g ` W ) | 
						
							| 6 |  | simpl |  |-  ( ( W e. SLMod /\ X e. V ) -> W e. SLMod ) | 
						
							| 7 |  | eqid |  |-  ( Base ` F ) = ( Base ` F ) | 
						
							| 8 | 2 7 4 | slmd0cl |  |-  ( W e. SLMod -> O e. ( Base ` F ) ) | 
						
							| 9 | 8 | adantr |  |-  ( ( W e. SLMod /\ X e. V ) -> O e. ( Base ` F ) ) | 
						
							| 10 |  | simpr |  |-  ( ( W e. SLMod /\ X e. V ) -> X e. V ) | 
						
							| 11 |  | eqid |  |-  ( +g ` W ) = ( +g ` W ) | 
						
							| 12 |  | eqid |  |-  ( +g ` F ) = ( +g ` F ) | 
						
							| 13 |  | eqid |  |-  ( .r ` F ) = ( .r ` F ) | 
						
							| 14 |  | eqid |  |-  ( 1r ` F ) = ( 1r ` F ) | 
						
							| 15 | 1 11 3 5 2 7 12 13 14 4 | slmdlema |  |-  ( ( W e. SLMod /\ ( O e. ( Base ` F ) /\ O e. ( Base ` F ) ) /\ ( X e. V /\ X e. V ) ) -> ( ( ( O .x. X ) e. V /\ ( O .x. ( X ( +g ` W ) X ) ) = ( ( O .x. X ) ( +g ` W ) ( O .x. X ) ) /\ ( ( O ( +g ` F ) O ) .x. X ) = ( ( O .x. X ) ( +g ` W ) ( O .x. X ) ) ) /\ ( ( ( O ( .r ` F ) O ) .x. X ) = ( O .x. ( O .x. X ) ) /\ ( ( 1r ` F ) .x. X ) = X /\ ( O .x. X ) = .0. ) ) ) | 
						
							| 16 | 6 9 9 10 10 15 | syl122anc |  |-  ( ( W e. SLMod /\ X e. V ) -> ( ( ( O .x. X ) e. V /\ ( O .x. ( X ( +g ` W ) X ) ) = ( ( O .x. X ) ( +g ` W ) ( O .x. X ) ) /\ ( ( O ( +g ` F ) O ) .x. X ) = ( ( O .x. X ) ( +g ` W ) ( O .x. X ) ) ) /\ ( ( ( O ( .r ` F ) O ) .x. X ) = ( O .x. ( O .x. X ) ) /\ ( ( 1r ` F ) .x. X ) = X /\ ( O .x. X ) = .0. ) ) ) | 
						
							| 17 | 16 | simprd |  |-  ( ( W e. SLMod /\ X e. V ) -> ( ( ( O ( .r ` F ) O ) .x. X ) = ( O .x. ( O .x. X ) ) /\ ( ( 1r ` F ) .x. X ) = X /\ ( O .x. X ) = .0. ) ) | 
						
							| 18 | 17 | simp3d |  |-  ( ( W e. SLMod /\ X e. V ) -> ( O .x. X ) = .0. ) |