Metamath Proof Explorer


Theorem slmdvs0

Description: Anything times the zero vector is the zero vector. Equation 1b of Kreyszig p. 51. ( hvmul0 analog.) (Contributed by NM, 12-Jan-2014) (Revised by Mario Carneiro, 19-Jun-2014) (Revised by Thierry Arnoux, 1-Apr-2018)

Ref Expression
Hypotheses slmdvs0.f
|- F = ( Scalar ` W )
slmdvs0.s
|- .x. = ( .s ` W )
slmdvs0.k
|- K = ( Base ` F )
slmdvs0.z
|- .0. = ( 0g ` W )
Assertion slmdvs0
|- ( ( W e. SLMod /\ X e. K ) -> ( X .x. .0. ) = .0. )

Proof

Step Hyp Ref Expression
1 slmdvs0.f
 |-  F = ( Scalar ` W )
2 slmdvs0.s
 |-  .x. = ( .s ` W )
3 slmdvs0.k
 |-  K = ( Base ` F )
4 slmdvs0.z
 |-  .0. = ( 0g ` W )
5 1 slmdsrg
 |-  ( W e. SLMod -> F e. SRing )
6 eqid
 |-  ( .r ` F ) = ( .r ` F )
7 eqid
 |-  ( 0g ` F ) = ( 0g ` F )
8 3 6 7 srgrz
 |-  ( ( F e. SRing /\ X e. K ) -> ( X ( .r ` F ) ( 0g ` F ) ) = ( 0g ` F ) )
9 5 8 sylan
 |-  ( ( W e. SLMod /\ X e. K ) -> ( X ( .r ` F ) ( 0g ` F ) ) = ( 0g ` F ) )
10 9 oveq1d
 |-  ( ( W e. SLMod /\ X e. K ) -> ( ( X ( .r ` F ) ( 0g ` F ) ) .x. .0. ) = ( ( 0g ` F ) .x. .0. ) )
11 simpl
 |-  ( ( W e. SLMod /\ X e. K ) -> W e. SLMod )
12 simpr
 |-  ( ( W e. SLMod /\ X e. K ) -> X e. K )
13 5 adantr
 |-  ( ( W e. SLMod /\ X e. K ) -> F e. SRing )
14 3 7 srg0cl
 |-  ( F e. SRing -> ( 0g ` F ) e. K )
15 13 14 syl
 |-  ( ( W e. SLMod /\ X e. K ) -> ( 0g ` F ) e. K )
16 eqid
 |-  ( Base ` W ) = ( Base ` W )
17 16 4 slmd0vcl
 |-  ( W e. SLMod -> .0. e. ( Base ` W ) )
18 17 adantr
 |-  ( ( W e. SLMod /\ X e. K ) -> .0. e. ( Base ` W ) )
19 16 1 2 3 6 slmdvsass
 |-  ( ( W e. SLMod /\ ( X e. K /\ ( 0g ` F ) e. K /\ .0. e. ( Base ` W ) ) ) -> ( ( X ( .r ` F ) ( 0g ` F ) ) .x. .0. ) = ( X .x. ( ( 0g ` F ) .x. .0. ) ) )
20 11 12 15 18 19 syl13anc
 |-  ( ( W e. SLMod /\ X e. K ) -> ( ( X ( .r ` F ) ( 0g ` F ) ) .x. .0. ) = ( X .x. ( ( 0g ` F ) .x. .0. ) ) )
21 16 1 2 7 4 slmd0vs
 |-  ( ( W e. SLMod /\ .0. e. ( Base ` W ) ) -> ( ( 0g ` F ) .x. .0. ) = .0. )
22 18 21 syldan
 |-  ( ( W e. SLMod /\ X e. K ) -> ( ( 0g ` F ) .x. .0. ) = .0. )
23 22 oveq2d
 |-  ( ( W e. SLMod /\ X e. K ) -> ( X .x. ( ( 0g ` F ) .x. .0. ) ) = ( X .x. .0. ) )
24 20 23 eqtrd
 |-  ( ( W e. SLMod /\ X e. K ) -> ( ( X ( .r ` F ) ( 0g ` F ) ) .x. .0. ) = ( X .x. .0. ) )
25 10 24 22 3eqtr3d
 |-  ( ( W e. SLMod /\ X e. K ) -> ( X .x. .0. ) = .0. )