| Step | Hyp | Ref | Expression | 
						
							| 1 |  | slmdvs0.f |  |-  F = ( Scalar ` W ) | 
						
							| 2 |  | slmdvs0.s |  |-  .x. = ( .s ` W ) | 
						
							| 3 |  | slmdvs0.k |  |-  K = ( Base ` F ) | 
						
							| 4 |  | slmdvs0.z |  |-  .0. = ( 0g ` W ) | 
						
							| 5 | 1 | slmdsrg |  |-  ( W e. SLMod -> F e. SRing ) | 
						
							| 6 |  | eqid |  |-  ( .r ` F ) = ( .r ` F ) | 
						
							| 7 |  | eqid |  |-  ( 0g ` F ) = ( 0g ` F ) | 
						
							| 8 | 3 6 7 | srgrz |  |-  ( ( F e. SRing /\ X e. K ) -> ( X ( .r ` F ) ( 0g ` F ) ) = ( 0g ` F ) ) | 
						
							| 9 | 5 8 | sylan |  |-  ( ( W e. SLMod /\ X e. K ) -> ( X ( .r ` F ) ( 0g ` F ) ) = ( 0g ` F ) ) | 
						
							| 10 | 9 | oveq1d |  |-  ( ( W e. SLMod /\ X e. K ) -> ( ( X ( .r ` F ) ( 0g ` F ) ) .x. .0. ) = ( ( 0g ` F ) .x. .0. ) ) | 
						
							| 11 |  | simpl |  |-  ( ( W e. SLMod /\ X e. K ) -> W e. SLMod ) | 
						
							| 12 |  | simpr |  |-  ( ( W e. SLMod /\ X e. K ) -> X e. K ) | 
						
							| 13 | 5 | adantr |  |-  ( ( W e. SLMod /\ X e. K ) -> F e. SRing ) | 
						
							| 14 | 3 7 | srg0cl |  |-  ( F e. SRing -> ( 0g ` F ) e. K ) | 
						
							| 15 | 13 14 | syl |  |-  ( ( W e. SLMod /\ X e. K ) -> ( 0g ` F ) e. K ) | 
						
							| 16 |  | eqid |  |-  ( Base ` W ) = ( Base ` W ) | 
						
							| 17 | 16 4 | slmd0vcl |  |-  ( W e. SLMod -> .0. e. ( Base ` W ) ) | 
						
							| 18 | 17 | adantr |  |-  ( ( W e. SLMod /\ X e. K ) -> .0. e. ( Base ` W ) ) | 
						
							| 19 | 16 1 2 3 6 | slmdvsass |  |-  ( ( W e. SLMod /\ ( X e. K /\ ( 0g ` F ) e. K /\ .0. e. ( Base ` W ) ) ) -> ( ( X ( .r ` F ) ( 0g ` F ) ) .x. .0. ) = ( X .x. ( ( 0g ` F ) .x. .0. ) ) ) | 
						
							| 20 | 11 12 15 18 19 | syl13anc |  |-  ( ( W e. SLMod /\ X e. K ) -> ( ( X ( .r ` F ) ( 0g ` F ) ) .x. .0. ) = ( X .x. ( ( 0g ` F ) .x. .0. ) ) ) | 
						
							| 21 | 16 1 2 7 4 | slmd0vs |  |-  ( ( W e. SLMod /\ .0. e. ( Base ` W ) ) -> ( ( 0g ` F ) .x. .0. ) = .0. ) | 
						
							| 22 | 18 21 | syldan |  |-  ( ( W e. SLMod /\ X e. K ) -> ( ( 0g ` F ) .x. .0. ) = .0. ) | 
						
							| 23 | 22 | oveq2d |  |-  ( ( W e. SLMod /\ X e. K ) -> ( X .x. ( ( 0g ` F ) .x. .0. ) ) = ( X .x. .0. ) ) | 
						
							| 24 | 20 23 | eqtrd |  |-  ( ( W e. SLMod /\ X e. K ) -> ( ( X ( .r ` F ) ( 0g ` F ) ) .x. .0. ) = ( X .x. .0. ) ) | 
						
							| 25 | 10 24 22 | 3eqtr3d |  |-  ( ( W e. SLMod /\ X e. K ) -> ( X .x. .0. ) = .0. ) |