| Step | Hyp | Ref | Expression | 
						
							| 1 |  | slmdvs0.f | ⊢ 𝐹  =  ( Scalar ‘ 𝑊 ) | 
						
							| 2 |  | slmdvs0.s | ⊢  ·   =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 3 |  | slmdvs0.k | ⊢ 𝐾  =  ( Base ‘ 𝐹 ) | 
						
							| 4 |  | slmdvs0.z | ⊢  0   =  ( 0g ‘ 𝑊 ) | 
						
							| 5 | 1 | slmdsrg | ⊢ ( 𝑊  ∈  SLMod  →  𝐹  ∈  SRing ) | 
						
							| 6 |  | eqid | ⊢ ( .r ‘ 𝐹 )  =  ( .r ‘ 𝐹 ) | 
						
							| 7 |  | eqid | ⊢ ( 0g ‘ 𝐹 )  =  ( 0g ‘ 𝐹 ) | 
						
							| 8 | 3 6 7 | srgrz | ⊢ ( ( 𝐹  ∈  SRing  ∧  𝑋  ∈  𝐾 )  →  ( 𝑋 ( .r ‘ 𝐹 ) ( 0g ‘ 𝐹 ) )  =  ( 0g ‘ 𝐹 ) ) | 
						
							| 9 | 5 8 | sylan | ⊢ ( ( 𝑊  ∈  SLMod  ∧  𝑋  ∈  𝐾 )  →  ( 𝑋 ( .r ‘ 𝐹 ) ( 0g ‘ 𝐹 ) )  =  ( 0g ‘ 𝐹 ) ) | 
						
							| 10 | 9 | oveq1d | ⊢ ( ( 𝑊  ∈  SLMod  ∧  𝑋  ∈  𝐾 )  →  ( ( 𝑋 ( .r ‘ 𝐹 ) ( 0g ‘ 𝐹 ) )  ·   0  )  =  ( ( 0g ‘ 𝐹 )  ·   0  ) ) | 
						
							| 11 |  | simpl | ⊢ ( ( 𝑊  ∈  SLMod  ∧  𝑋  ∈  𝐾 )  →  𝑊  ∈  SLMod ) | 
						
							| 12 |  | simpr | ⊢ ( ( 𝑊  ∈  SLMod  ∧  𝑋  ∈  𝐾 )  →  𝑋  ∈  𝐾 ) | 
						
							| 13 | 5 | adantr | ⊢ ( ( 𝑊  ∈  SLMod  ∧  𝑋  ∈  𝐾 )  →  𝐹  ∈  SRing ) | 
						
							| 14 | 3 7 | srg0cl | ⊢ ( 𝐹  ∈  SRing  →  ( 0g ‘ 𝐹 )  ∈  𝐾 ) | 
						
							| 15 | 13 14 | syl | ⊢ ( ( 𝑊  ∈  SLMod  ∧  𝑋  ∈  𝐾 )  →  ( 0g ‘ 𝐹 )  ∈  𝐾 ) | 
						
							| 16 |  | eqid | ⊢ ( Base ‘ 𝑊 )  =  ( Base ‘ 𝑊 ) | 
						
							| 17 | 16 4 | slmd0vcl | ⊢ ( 𝑊  ∈  SLMod  →   0   ∈  ( Base ‘ 𝑊 ) ) | 
						
							| 18 | 17 | adantr | ⊢ ( ( 𝑊  ∈  SLMod  ∧  𝑋  ∈  𝐾 )  →   0   ∈  ( Base ‘ 𝑊 ) ) | 
						
							| 19 | 16 1 2 3 6 | slmdvsass | ⊢ ( ( 𝑊  ∈  SLMod  ∧  ( 𝑋  ∈  𝐾  ∧  ( 0g ‘ 𝐹 )  ∈  𝐾  ∧   0   ∈  ( Base ‘ 𝑊 ) ) )  →  ( ( 𝑋 ( .r ‘ 𝐹 ) ( 0g ‘ 𝐹 ) )  ·   0  )  =  ( 𝑋  ·  ( ( 0g ‘ 𝐹 )  ·   0  ) ) ) | 
						
							| 20 | 11 12 15 18 19 | syl13anc | ⊢ ( ( 𝑊  ∈  SLMod  ∧  𝑋  ∈  𝐾 )  →  ( ( 𝑋 ( .r ‘ 𝐹 ) ( 0g ‘ 𝐹 ) )  ·   0  )  =  ( 𝑋  ·  ( ( 0g ‘ 𝐹 )  ·   0  ) ) ) | 
						
							| 21 | 16 1 2 7 4 | slmd0vs | ⊢ ( ( 𝑊  ∈  SLMod  ∧   0   ∈  ( Base ‘ 𝑊 ) )  →  ( ( 0g ‘ 𝐹 )  ·   0  )  =   0  ) | 
						
							| 22 | 18 21 | syldan | ⊢ ( ( 𝑊  ∈  SLMod  ∧  𝑋  ∈  𝐾 )  →  ( ( 0g ‘ 𝐹 )  ·   0  )  =   0  ) | 
						
							| 23 | 22 | oveq2d | ⊢ ( ( 𝑊  ∈  SLMod  ∧  𝑋  ∈  𝐾 )  →  ( 𝑋  ·  ( ( 0g ‘ 𝐹 )  ·   0  ) )  =  ( 𝑋  ·   0  ) ) | 
						
							| 24 | 20 23 | eqtrd | ⊢ ( ( 𝑊  ∈  SLMod  ∧  𝑋  ∈  𝐾 )  →  ( ( 𝑋 ( .r ‘ 𝐹 ) ( 0g ‘ 𝐹 ) )  ·   0  )  =  ( 𝑋  ·   0  ) ) | 
						
							| 25 | 10 24 22 | 3eqtr3d | ⊢ ( ( 𝑊  ∈  SLMod  ∧  𝑋  ∈  𝐾 )  →  ( 𝑋  ·   0  )  =   0  ) |