Metamath Proof Explorer


Theorem slmdvs0

Description: Anything times the zero vector is the zero vector. Equation 1b of Kreyszig p. 51. ( hvmul0 analog.) (Contributed by NM, 12-Jan-2014) (Revised by Mario Carneiro, 19-Jun-2014) (Revised by Thierry Arnoux, 1-Apr-2018)

Ref Expression
Hypotheses slmdvs0.f F = Scalar W
slmdvs0.s · ˙ = W
slmdvs0.k K = Base F
slmdvs0.z 0 ˙ = 0 W
Assertion slmdvs0 W SLMod X K X · ˙ 0 ˙ = 0 ˙

Proof

Step Hyp Ref Expression
1 slmdvs0.f F = Scalar W
2 slmdvs0.s · ˙ = W
3 slmdvs0.k K = Base F
4 slmdvs0.z 0 ˙ = 0 W
5 1 slmdsrg W SLMod F SRing
6 eqid F = F
7 eqid 0 F = 0 F
8 3 6 7 srgrz F SRing X K X F 0 F = 0 F
9 5 8 sylan W SLMod X K X F 0 F = 0 F
10 9 oveq1d W SLMod X K X F 0 F · ˙ 0 ˙ = 0 F · ˙ 0 ˙
11 simpl W SLMod X K W SLMod
12 simpr W SLMod X K X K
13 5 adantr W SLMod X K F SRing
14 3 7 srg0cl F SRing 0 F K
15 13 14 syl W SLMod X K 0 F K
16 eqid Base W = Base W
17 16 4 slmd0vcl W SLMod 0 ˙ Base W
18 17 adantr W SLMod X K 0 ˙ Base W
19 16 1 2 3 6 slmdvsass W SLMod X K 0 F K 0 ˙ Base W X F 0 F · ˙ 0 ˙ = X · ˙ 0 F · ˙ 0 ˙
20 11 12 15 18 19 syl13anc W SLMod X K X F 0 F · ˙ 0 ˙ = X · ˙ 0 F · ˙ 0 ˙
21 16 1 2 7 4 slmd0vs W SLMod 0 ˙ Base W 0 F · ˙ 0 ˙ = 0 ˙
22 18 21 syldan W SLMod X K 0 F · ˙ 0 ˙ = 0 ˙
23 22 oveq2d W SLMod X K X · ˙ 0 F · ˙ 0 ˙ = X · ˙ 0 ˙
24 20 23 eqtrd W SLMod X K X F 0 F · ˙ 0 ˙ = X · ˙ 0 ˙
25 10 24 22 3eqtr3d W SLMod X K X · ˙ 0 ˙ = 0 ˙