Metamath Proof Explorer


Theorem srgrz

Description: The zero of a semiring is a right-absorbing element. (Contributed by Thierry Arnoux, 1-Apr-2018)

Ref Expression
Hypotheses srgz.b B=BaseR
srgz.t ·˙=R
srgz.z 0˙=0R
Assertion srgrz RSRingXBX·˙0˙=0˙

Proof

Step Hyp Ref Expression
1 srgz.b B=BaseR
2 srgz.t ·˙=R
3 srgz.z 0˙=0R
4 eqid mulGrpR=mulGrpR
5 eqid +R=+R
6 1 4 5 2 3 issrg RSRingRCMndmulGrpRMndxByBzBx·˙y+Rz=x·˙y+Rx·˙zx+Ry·˙z=x·˙z+Ry·˙z0˙·˙x=0˙x·˙0˙=0˙
7 6 simp3bi RSRingxByBzBx·˙y+Rz=x·˙y+Rx·˙zx+Ry·˙z=x·˙z+Ry·˙z0˙·˙x=0˙x·˙0˙=0˙
8 7 r19.21bi RSRingxByBzBx·˙y+Rz=x·˙y+Rx·˙zx+Ry·˙z=x·˙z+Ry·˙z0˙·˙x=0˙x·˙0˙=0˙
9 8 simprrd RSRingxBx·˙0˙=0˙
10 9 ralrimiva RSRingxBx·˙0˙=0˙
11 oveq1 x=Xx·˙0˙=X·˙0˙
12 11 eqeq1d x=Xx·˙0˙=0˙X·˙0˙=0˙
13 12 rspcv XBxBx·˙0˙=0˙X·˙0˙=0˙
14 10 13 mpan9 RSRingXBX·˙0˙=0˙