Metamath Proof Explorer


Theorem slmd0vs

Description: Zero times a vector is the zero vector. Equation 1a of Kreyszig p. 51. ( ax-hvmul0 analog.) (Contributed by NM, 12-Jan-2014) (Revised by Mario Carneiro, 19-Jun-2014) (Revised by Thierry Arnoux, 1-Apr-2018)

Ref Expression
Hypotheses slmd0vs.v V=BaseW
slmd0vs.f F=ScalarW
slmd0vs.s ·˙=W
slmd0vs.o O=0F
slmd0vs.z 0˙=0W
Assertion slmd0vs WSLModXVO·˙X=0˙

Proof

Step Hyp Ref Expression
1 slmd0vs.v V=BaseW
2 slmd0vs.f F=ScalarW
3 slmd0vs.s ·˙=W
4 slmd0vs.o O=0F
5 slmd0vs.z 0˙=0W
6 simpl WSLModXVWSLMod
7 eqid BaseF=BaseF
8 2 7 4 slmd0cl WSLModOBaseF
9 8 adantr WSLModXVOBaseF
10 simpr WSLModXVXV
11 eqid +W=+W
12 eqid +F=+F
13 eqid F=F
14 eqid 1F=1F
15 1 11 3 5 2 7 12 13 14 4 slmdlema WSLModOBaseFOBaseFXVXVO·˙XVO·˙X+WX=O·˙X+WO·˙XO+FO·˙X=O·˙X+WO·˙XOFO·˙X=O·˙O·˙X1F·˙X=XO·˙X=0˙
16 6 9 9 10 10 15 syl122anc WSLModXVO·˙XVO·˙X+WX=O·˙X+WO·˙XO+FO·˙X=O·˙X+WO·˙XOFO·˙X=O·˙O·˙X1F·˙X=XO·˙X=0˙
17 16 simprd WSLModXVOFO·˙X=O·˙O·˙X1F·˙X=XO·˙X=0˙
18 17 simp3d WSLModXVO·˙X=0˙