Metamath Proof Explorer


Theorem slmd0vs

Description: Zero times a vector is the zero vector. Equation 1a of Kreyszig p. 51. ( ax-hvmul0 analog.) (Contributed by NM, 12-Jan-2014) (Revised by Mario Carneiro, 19-Jun-2014) (Revised by Thierry Arnoux, 1-Apr-2018)

Ref Expression
Hypotheses slmd0vs.v V = Base W
slmd0vs.f F = Scalar W
slmd0vs.s · ˙ = W
slmd0vs.o O = 0 F
slmd0vs.z 0 ˙ = 0 W
Assertion slmd0vs W SLMod X V O · ˙ X = 0 ˙

Proof

Step Hyp Ref Expression
1 slmd0vs.v V = Base W
2 slmd0vs.f F = Scalar W
3 slmd0vs.s · ˙ = W
4 slmd0vs.o O = 0 F
5 slmd0vs.z 0 ˙ = 0 W
6 simpl W SLMod X V W SLMod
7 eqid Base F = Base F
8 2 7 4 slmd0cl W SLMod O Base F
9 8 adantr W SLMod X V O Base F
10 simpr W SLMod X V X V
11 eqid + W = + W
12 eqid + F = + F
13 eqid F = F
14 eqid 1 F = 1 F
15 1 11 3 5 2 7 12 13 14 4 slmdlema W SLMod O Base F O Base F X V X V O · ˙ X V O · ˙ X + W X = O · ˙ X + W O · ˙ X O + F O · ˙ X = O · ˙ X + W O · ˙ X O F O · ˙ X = O · ˙ O · ˙ X 1 F · ˙ X = X O · ˙ X = 0 ˙
16 6 9 9 10 10 15 syl122anc W SLMod X V O · ˙ X V O · ˙ X + W X = O · ˙ X + W O · ˙ X O + F O · ˙ X = O · ˙ X + W O · ˙ X O F O · ˙ X = O · ˙ O · ˙ X 1 F · ˙ X = X O · ˙ X = 0 ˙
17 16 simprd W SLMod X V O F O · ˙ X = O · ˙ O · ˙ X 1 F · ˙ X = X O · ˙ X = 0 ˙
18 17 simp3d W SLMod X V O · ˙ X = 0 ˙