| Step | Hyp | Ref | Expression | 
						
							| 1 |  | slmd0vs.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | slmd0vs.f | ⊢ 𝐹  =  ( Scalar ‘ 𝑊 ) | 
						
							| 3 |  | slmd0vs.s | ⊢  ·   =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 4 |  | slmd0vs.o | ⊢ 𝑂  =  ( 0g ‘ 𝐹 ) | 
						
							| 5 |  | slmd0vs.z | ⊢  0   =  ( 0g ‘ 𝑊 ) | 
						
							| 6 |  | simpl | ⊢ ( ( 𝑊  ∈  SLMod  ∧  𝑋  ∈  𝑉 )  →  𝑊  ∈  SLMod ) | 
						
							| 7 |  | eqid | ⊢ ( Base ‘ 𝐹 )  =  ( Base ‘ 𝐹 ) | 
						
							| 8 | 2 7 4 | slmd0cl | ⊢ ( 𝑊  ∈  SLMod  →  𝑂  ∈  ( Base ‘ 𝐹 ) ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝑊  ∈  SLMod  ∧  𝑋  ∈  𝑉 )  →  𝑂  ∈  ( Base ‘ 𝐹 ) ) | 
						
							| 10 |  | simpr | ⊢ ( ( 𝑊  ∈  SLMod  ∧  𝑋  ∈  𝑉 )  →  𝑋  ∈  𝑉 ) | 
						
							| 11 |  | eqid | ⊢ ( +g ‘ 𝑊 )  =  ( +g ‘ 𝑊 ) | 
						
							| 12 |  | eqid | ⊢ ( +g ‘ 𝐹 )  =  ( +g ‘ 𝐹 ) | 
						
							| 13 |  | eqid | ⊢ ( .r ‘ 𝐹 )  =  ( .r ‘ 𝐹 ) | 
						
							| 14 |  | eqid | ⊢ ( 1r ‘ 𝐹 )  =  ( 1r ‘ 𝐹 ) | 
						
							| 15 | 1 11 3 5 2 7 12 13 14 4 | slmdlema | ⊢ ( ( 𝑊  ∈  SLMod  ∧  ( 𝑂  ∈  ( Base ‘ 𝐹 )  ∧  𝑂  ∈  ( Base ‘ 𝐹 ) )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑋  ∈  𝑉 ) )  →  ( ( ( 𝑂  ·  𝑋 )  ∈  𝑉  ∧  ( 𝑂  ·  ( 𝑋 ( +g ‘ 𝑊 ) 𝑋 ) )  =  ( ( 𝑂  ·  𝑋 ) ( +g ‘ 𝑊 ) ( 𝑂  ·  𝑋 ) )  ∧  ( ( 𝑂 ( +g ‘ 𝐹 ) 𝑂 )  ·  𝑋 )  =  ( ( 𝑂  ·  𝑋 ) ( +g ‘ 𝑊 ) ( 𝑂  ·  𝑋 ) ) )  ∧  ( ( ( 𝑂 ( .r ‘ 𝐹 ) 𝑂 )  ·  𝑋 )  =  ( 𝑂  ·  ( 𝑂  ·  𝑋 ) )  ∧  ( ( 1r ‘ 𝐹 )  ·  𝑋 )  =  𝑋  ∧  ( 𝑂  ·  𝑋 )  =   0  ) ) ) | 
						
							| 16 | 6 9 9 10 10 15 | syl122anc | ⊢ ( ( 𝑊  ∈  SLMod  ∧  𝑋  ∈  𝑉 )  →  ( ( ( 𝑂  ·  𝑋 )  ∈  𝑉  ∧  ( 𝑂  ·  ( 𝑋 ( +g ‘ 𝑊 ) 𝑋 ) )  =  ( ( 𝑂  ·  𝑋 ) ( +g ‘ 𝑊 ) ( 𝑂  ·  𝑋 ) )  ∧  ( ( 𝑂 ( +g ‘ 𝐹 ) 𝑂 )  ·  𝑋 )  =  ( ( 𝑂  ·  𝑋 ) ( +g ‘ 𝑊 ) ( 𝑂  ·  𝑋 ) ) )  ∧  ( ( ( 𝑂 ( .r ‘ 𝐹 ) 𝑂 )  ·  𝑋 )  =  ( 𝑂  ·  ( 𝑂  ·  𝑋 ) )  ∧  ( ( 1r ‘ 𝐹 )  ·  𝑋 )  =  𝑋  ∧  ( 𝑂  ·  𝑋 )  =   0  ) ) ) | 
						
							| 17 | 16 | simprd | ⊢ ( ( 𝑊  ∈  SLMod  ∧  𝑋  ∈  𝑉 )  →  ( ( ( 𝑂 ( .r ‘ 𝐹 ) 𝑂 )  ·  𝑋 )  =  ( 𝑂  ·  ( 𝑂  ·  𝑋 ) )  ∧  ( ( 1r ‘ 𝐹 )  ·  𝑋 )  =  𝑋  ∧  ( 𝑂  ·  𝑋 )  =   0  ) ) | 
						
							| 18 | 17 | simp3d | ⊢ ( ( 𝑊  ∈  SLMod  ∧  𝑋  ∈  𝑉 )  →  ( 𝑂  ·  𝑋 )  =   0  ) |