| Step |
Hyp |
Ref |
Expression |
| 1 |
|
slmd0vs.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
slmd0vs.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
| 3 |
|
slmd0vs.s |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
| 4 |
|
slmd0vs.o |
⊢ 𝑂 = ( 0g ‘ 𝐹 ) |
| 5 |
|
slmd0vs.z |
⊢ 0 = ( 0g ‘ 𝑊 ) |
| 6 |
|
simpl |
⊢ ( ( 𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝑉 ) → 𝑊 ∈ SLMod ) |
| 7 |
|
eqid |
⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) |
| 8 |
2 7 4
|
slmd0cl |
⊢ ( 𝑊 ∈ SLMod → 𝑂 ∈ ( Base ‘ 𝐹 ) ) |
| 9 |
8
|
adantr |
⊢ ( ( 𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝑉 ) → 𝑂 ∈ ( Base ‘ 𝐹 ) ) |
| 10 |
|
simpr |
⊢ ( ( 𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝑉 ) → 𝑋 ∈ 𝑉 ) |
| 11 |
|
eqid |
⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) |
| 12 |
|
eqid |
⊢ ( +g ‘ 𝐹 ) = ( +g ‘ 𝐹 ) |
| 13 |
|
eqid |
⊢ ( .r ‘ 𝐹 ) = ( .r ‘ 𝐹 ) |
| 14 |
|
eqid |
⊢ ( 1r ‘ 𝐹 ) = ( 1r ‘ 𝐹 ) |
| 15 |
1 11 3 5 2 7 12 13 14 4
|
slmdlema |
⊢ ( ( 𝑊 ∈ SLMod ∧ ( 𝑂 ∈ ( Base ‘ 𝐹 ) ∧ 𝑂 ∈ ( Base ‘ 𝐹 ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ) → ( ( ( 𝑂 · 𝑋 ) ∈ 𝑉 ∧ ( 𝑂 · ( 𝑋 ( +g ‘ 𝑊 ) 𝑋 ) ) = ( ( 𝑂 · 𝑋 ) ( +g ‘ 𝑊 ) ( 𝑂 · 𝑋 ) ) ∧ ( ( 𝑂 ( +g ‘ 𝐹 ) 𝑂 ) · 𝑋 ) = ( ( 𝑂 · 𝑋 ) ( +g ‘ 𝑊 ) ( 𝑂 · 𝑋 ) ) ) ∧ ( ( ( 𝑂 ( .r ‘ 𝐹 ) 𝑂 ) · 𝑋 ) = ( 𝑂 · ( 𝑂 · 𝑋 ) ) ∧ ( ( 1r ‘ 𝐹 ) · 𝑋 ) = 𝑋 ∧ ( 𝑂 · 𝑋 ) = 0 ) ) ) |
| 16 |
6 9 9 10 10 15
|
syl122anc |
⊢ ( ( 𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝑉 ) → ( ( ( 𝑂 · 𝑋 ) ∈ 𝑉 ∧ ( 𝑂 · ( 𝑋 ( +g ‘ 𝑊 ) 𝑋 ) ) = ( ( 𝑂 · 𝑋 ) ( +g ‘ 𝑊 ) ( 𝑂 · 𝑋 ) ) ∧ ( ( 𝑂 ( +g ‘ 𝐹 ) 𝑂 ) · 𝑋 ) = ( ( 𝑂 · 𝑋 ) ( +g ‘ 𝑊 ) ( 𝑂 · 𝑋 ) ) ) ∧ ( ( ( 𝑂 ( .r ‘ 𝐹 ) 𝑂 ) · 𝑋 ) = ( 𝑂 · ( 𝑂 · 𝑋 ) ) ∧ ( ( 1r ‘ 𝐹 ) · 𝑋 ) = 𝑋 ∧ ( 𝑂 · 𝑋 ) = 0 ) ) ) |
| 17 |
16
|
simprd |
⊢ ( ( 𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝑉 ) → ( ( ( 𝑂 ( .r ‘ 𝐹 ) 𝑂 ) · 𝑋 ) = ( 𝑂 · ( 𝑂 · 𝑋 ) ) ∧ ( ( 1r ‘ 𝐹 ) · 𝑋 ) = 𝑋 ∧ ( 𝑂 · 𝑋 ) = 0 ) ) |
| 18 |
17
|
simp3d |
⊢ ( ( 𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑂 · 𝑋 ) = 0 ) |