| Step | Hyp | Ref | Expression | 
						
							| 1 |  | slmdvsass.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | slmdvsass.f | ⊢ 𝐹  =  ( Scalar ‘ 𝑊 ) | 
						
							| 3 |  | slmdvsass.s | ⊢  ·   =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 4 |  | slmdvsass.k | ⊢ 𝐾  =  ( Base ‘ 𝐹 ) | 
						
							| 5 |  | slmdvsass.t | ⊢  ×   =  ( .r ‘ 𝐹 ) | 
						
							| 6 |  | eqid | ⊢ ( +g ‘ 𝑊 )  =  ( +g ‘ 𝑊 ) | 
						
							| 7 |  | eqid | ⊢ ( 0g ‘ 𝑊 )  =  ( 0g ‘ 𝑊 ) | 
						
							| 8 |  | eqid | ⊢ ( +g ‘ 𝐹 )  =  ( +g ‘ 𝐹 ) | 
						
							| 9 |  | eqid | ⊢ ( 1r ‘ 𝐹 )  =  ( 1r ‘ 𝐹 ) | 
						
							| 10 |  | eqid | ⊢ ( 0g ‘ 𝐹 )  =  ( 0g ‘ 𝐹 ) | 
						
							| 11 | 1 6 3 7 2 4 8 5 9 10 | slmdlema | ⊢ ( ( 𝑊  ∈  SLMod  ∧  ( 𝑄  ∈  𝐾  ∧  𝑅  ∈  𝐾 )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑋  ∈  𝑉 ) )  →  ( ( ( 𝑅  ·  𝑋 )  ∈  𝑉  ∧  ( 𝑅  ·  ( 𝑋 ( +g ‘ 𝑊 ) 𝑋 ) )  =  ( ( 𝑅  ·  𝑋 ) ( +g ‘ 𝑊 ) ( 𝑅  ·  𝑋 ) )  ∧  ( ( 𝑄 ( +g ‘ 𝐹 ) 𝑅 )  ·  𝑋 )  =  ( ( 𝑄  ·  𝑋 ) ( +g ‘ 𝑊 ) ( 𝑅  ·  𝑋 ) ) )  ∧  ( ( ( 𝑄  ×  𝑅 )  ·  𝑋 )  =  ( 𝑄  ·  ( 𝑅  ·  𝑋 ) )  ∧  ( ( 1r ‘ 𝐹 )  ·  𝑋 )  =  𝑋  ∧  ( ( 0g ‘ 𝐹 )  ·  𝑋 )  =  ( 0g ‘ 𝑊 ) ) ) ) | 
						
							| 12 | 11 | simprd | ⊢ ( ( 𝑊  ∈  SLMod  ∧  ( 𝑄  ∈  𝐾  ∧  𝑅  ∈  𝐾 )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑋  ∈  𝑉 ) )  →  ( ( ( 𝑄  ×  𝑅 )  ·  𝑋 )  =  ( 𝑄  ·  ( 𝑅  ·  𝑋 ) )  ∧  ( ( 1r ‘ 𝐹 )  ·  𝑋 )  =  𝑋  ∧  ( ( 0g ‘ 𝐹 )  ·  𝑋 )  =  ( 0g ‘ 𝑊 ) ) ) | 
						
							| 13 | 12 | simp1d | ⊢ ( ( 𝑊  ∈  SLMod  ∧  ( 𝑄  ∈  𝐾  ∧  𝑅  ∈  𝐾 )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑋  ∈  𝑉 ) )  →  ( ( 𝑄  ×  𝑅 )  ·  𝑋 )  =  ( 𝑄  ·  ( 𝑅  ·  𝑋 ) ) ) | 
						
							| 14 | 13 | 3expa | ⊢ ( ( ( 𝑊  ∈  SLMod  ∧  ( 𝑄  ∈  𝐾  ∧  𝑅  ∈  𝐾 ) )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑋  ∈  𝑉 ) )  →  ( ( 𝑄  ×  𝑅 )  ·  𝑋 )  =  ( 𝑄  ·  ( 𝑅  ·  𝑋 ) ) ) | 
						
							| 15 | 14 | anabsan2 | ⊢ ( ( ( 𝑊  ∈  SLMod  ∧  ( 𝑄  ∈  𝐾  ∧  𝑅  ∈  𝐾 ) )  ∧  𝑋  ∈  𝑉 )  →  ( ( 𝑄  ×  𝑅 )  ·  𝑋 )  =  ( 𝑄  ·  ( 𝑅  ·  𝑋 ) ) ) | 
						
							| 16 | 15 | exp42 | ⊢ ( 𝑊  ∈  SLMod  →  ( 𝑄  ∈  𝐾  →  ( 𝑅  ∈  𝐾  →  ( 𝑋  ∈  𝑉  →  ( ( 𝑄  ×  𝑅 )  ·  𝑋 )  =  ( 𝑄  ·  ( 𝑅  ·  𝑋 ) ) ) ) ) ) | 
						
							| 17 | 16 | 3imp2 | ⊢ ( ( 𝑊  ∈  SLMod  ∧  ( 𝑄  ∈  𝐾  ∧  𝑅  ∈  𝐾  ∧  𝑋  ∈  𝑉 ) )  →  ( ( 𝑄  ×  𝑅 )  ·  𝑋 )  =  ( 𝑄  ·  ( 𝑅  ·  𝑋 ) ) ) |