| Step | Hyp | Ref | Expression | 
						
							| 1 |  | slmdvsass.v |  |-  V = ( Base ` W ) | 
						
							| 2 |  | slmdvsass.f |  |-  F = ( Scalar ` W ) | 
						
							| 3 |  | slmdvsass.s |  |-  .x. = ( .s ` W ) | 
						
							| 4 |  | slmdvsass.k |  |-  K = ( Base ` F ) | 
						
							| 5 |  | slmdvsass.t |  |-  .X. = ( .r ` F ) | 
						
							| 6 |  | eqid |  |-  ( +g ` W ) = ( +g ` W ) | 
						
							| 7 |  | eqid |  |-  ( 0g ` W ) = ( 0g ` W ) | 
						
							| 8 |  | eqid |  |-  ( +g ` F ) = ( +g ` F ) | 
						
							| 9 |  | eqid |  |-  ( 1r ` F ) = ( 1r ` F ) | 
						
							| 10 |  | eqid |  |-  ( 0g ` F ) = ( 0g ` F ) | 
						
							| 11 | 1 6 3 7 2 4 8 5 9 10 | slmdlema |  |-  ( ( W e. SLMod /\ ( Q e. K /\ R e. K ) /\ ( X e. V /\ X e. V ) ) -> ( ( ( R .x. X ) e. V /\ ( R .x. ( X ( +g ` W ) X ) ) = ( ( R .x. X ) ( +g ` W ) ( R .x. X ) ) /\ ( ( Q ( +g ` F ) R ) .x. X ) = ( ( Q .x. X ) ( +g ` W ) ( R .x. X ) ) ) /\ ( ( ( Q .X. R ) .x. X ) = ( Q .x. ( R .x. X ) ) /\ ( ( 1r ` F ) .x. X ) = X /\ ( ( 0g ` F ) .x. X ) = ( 0g ` W ) ) ) ) | 
						
							| 12 | 11 | simprd |  |-  ( ( W e. SLMod /\ ( Q e. K /\ R e. K ) /\ ( X e. V /\ X e. V ) ) -> ( ( ( Q .X. R ) .x. X ) = ( Q .x. ( R .x. X ) ) /\ ( ( 1r ` F ) .x. X ) = X /\ ( ( 0g ` F ) .x. X ) = ( 0g ` W ) ) ) | 
						
							| 13 | 12 | simp1d |  |-  ( ( W e. SLMod /\ ( Q e. K /\ R e. K ) /\ ( X e. V /\ X e. V ) ) -> ( ( Q .X. R ) .x. X ) = ( Q .x. ( R .x. X ) ) ) | 
						
							| 14 | 13 | 3expa |  |-  ( ( ( W e. SLMod /\ ( Q e. K /\ R e. K ) ) /\ ( X e. V /\ X e. V ) ) -> ( ( Q .X. R ) .x. X ) = ( Q .x. ( R .x. X ) ) ) | 
						
							| 15 | 14 | anabsan2 |  |-  ( ( ( W e. SLMod /\ ( Q e. K /\ R e. K ) ) /\ X e. V ) -> ( ( Q .X. R ) .x. X ) = ( Q .x. ( R .x. X ) ) ) | 
						
							| 16 | 15 | exp42 |  |-  ( W e. SLMod -> ( Q e. K -> ( R e. K -> ( X e. V -> ( ( Q .X. R ) .x. X ) = ( Q .x. ( R .x. X ) ) ) ) ) ) | 
						
							| 17 | 16 | 3imp2 |  |-  ( ( W e. SLMod /\ ( Q e. K /\ R e. K /\ X e. V ) ) -> ( ( Q .X. R ) .x. X ) = ( Q .x. ( R .x. X ) ) ) |