| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsumvsca.b | ⊢ 𝐵  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | gsumvsca.g | ⊢ 𝐺  =  ( Scalar ‘ 𝑊 ) | 
						
							| 3 |  | gsumvsca.z | ⊢  0   =  ( 0g ‘ 𝑊 ) | 
						
							| 4 |  | gsumvsca.t | ⊢  ·   =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 5 |  | gsumvsca.p | ⊢  +   =  ( +g ‘ 𝑊 ) | 
						
							| 6 |  | gsumvsca.k | ⊢ ( 𝜑  →  𝐾  ⊆  ( Base ‘ 𝐺 ) ) | 
						
							| 7 |  | gsumvsca.a | ⊢ ( 𝜑  →  𝐴  ∈  Fin ) | 
						
							| 8 |  | gsumvsca.w | ⊢ ( 𝜑  →  𝑊  ∈  SLMod ) | 
						
							| 9 |  | gsumvsca1.n | ⊢ ( 𝜑  →  𝑃  ∈  𝐾 ) | 
						
							| 10 |  | gsumvsca1.c | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝑄  ∈  𝐵 ) | 
						
							| 11 |  | ssid | ⊢ 𝐴  ⊆  𝐴 | 
						
							| 12 |  | sseq1 | ⊢ ( 𝑎  =  ∅  →  ( 𝑎  ⊆  𝐴  ↔  ∅  ⊆  𝐴 ) ) | 
						
							| 13 | 12 | anbi2d | ⊢ ( 𝑎  =  ∅  →  ( ( 𝜑  ∧  𝑎  ⊆  𝐴 )  ↔  ( 𝜑  ∧  ∅  ⊆  𝐴 ) ) ) | 
						
							| 14 |  | mpteq1 | ⊢ ( 𝑎  =  ∅  →  ( 𝑘  ∈  𝑎  ↦  ( 𝑃  ·  𝑄 ) )  =  ( 𝑘  ∈  ∅  ↦  ( 𝑃  ·  𝑄 ) ) ) | 
						
							| 15 | 14 | oveq2d | ⊢ ( 𝑎  =  ∅  →  ( 𝑊  Σg  ( 𝑘  ∈  𝑎  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( 𝑊  Σg  ( 𝑘  ∈  ∅  ↦  ( 𝑃  ·  𝑄 ) ) ) ) | 
						
							| 16 |  | mpteq1 | ⊢ ( 𝑎  =  ∅  →  ( 𝑘  ∈  𝑎  ↦  𝑄 )  =  ( 𝑘  ∈  ∅  ↦  𝑄 ) ) | 
						
							| 17 | 16 | oveq2d | ⊢ ( 𝑎  =  ∅  →  ( 𝑊  Σg  ( 𝑘  ∈  𝑎  ↦  𝑄 ) )  =  ( 𝑊  Σg  ( 𝑘  ∈  ∅  ↦  𝑄 ) ) ) | 
						
							| 18 | 17 | oveq2d | ⊢ ( 𝑎  =  ∅  →  ( 𝑃  ·  ( 𝑊  Σg  ( 𝑘  ∈  𝑎  ↦  𝑄 ) ) )  =  ( 𝑃  ·  ( 𝑊  Σg  ( 𝑘  ∈  ∅  ↦  𝑄 ) ) ) ) | 
						
							| 19 | 15 18 | eqeq12d | ⊢ ( 𝑎  =  ∅  →  ( ( 𝑊  Σg  ( 𝑘  ∈  𝑎  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( 𝑃  ·  ( 𝑊  Σg  ( 𝑘  ∈  𝑎  ↦  𝑄 ) ) )  ↔  ( 𝑊  Σg  ( 𝑘  ∈  ∅  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( 𝑃  ·  ( 𝑊  Σg  ( 𝑘  ∈  ∅  ↦  𝑄 ) ) ) ) ) | 
						
							| 20 | 13 19 | imbi12d | ⊢ ( 𝑎  =  ∅  →  ( ( ( 𝜑  ∧  𝑎  ⊆  𝐴 )  →  ( 𝑊  Σg  ( 𝑘  ∈  𝑎  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( 𝑃  ·  ( 𝑊  Σg  ( 𝑘  ∈  𝑎  ↦  𝑄 ) ) ) )  ↔  ( ( 𝜑  ∧  ∅  ⊆  𝐴 )  →  ( 𝑊  Σg  ( 𝑘  ∈  ∅  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( 𝑃  ·  ( 𝑊  Σg  ( 𝑘  ∈  ∅  ↦  𝑄 ) ) ) ) ) ) | 
						
							| 21 |  | sseq1 | ⊢ ( 𝑎  =  𝑒  →  ( 𝑎  ⊆  𝐴  ↔  𝑒  ⊆  𝐴 ) ) | 
						
							| 22 | 21 | anbi2d | ⊢ ( 𝑎  =  𝑒  →  ( ( 𝜑  ∧  𝑎  ⊆  𝐴 )  ↔  ( 𝜑  ∧  𝑒  ⊆  𝐴 ) ) ) | 
						
							| 23 |  | mpteq1 | ⊢ ( 𝑎  =  𝑒  →  ( 𝑘  ∈  𝑎  ↦  ( 𝑃  ·  𝑄 ) )  =  ( 𝑘  ∈  𝑒  ↦  ( 𝑃  ·  𝑄 ) ) ) | 
						
							| 24 | 23 | oveq2d | ⊢ ( 𝑎  =  𝑒  →  ( 𝑊  Σg  ( 𝑘  ∈  𝑎  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( 𝑊  Σg  ( 𝑘  ∈  𝑒  ↦  ( 𝑃  ·  𝑄 ) ) ) ) | 
						
							| 25 |  | mpteq1 | ⊢ ( 𝑎  =  𝑒  →  ( 𝑘  ∈  𝑎  ↦  𝑄 )  =  ( 𝑘  ∈  𝑒  ↦  𝑄 ) ) | 
						
							| 26 | 25 | oveq2d | ⊢ ( 𝑎  =  𝑒  →  ( 𝑊  Σg  ( 𝑘  ∈  𝑎  ↦  𝑄 ) )  =  ( 𝑊  Σg  ( 𝑘  ∈  𝑒  ↦  𝑄 ) ) ) | 
						
							| 27 | 26 | oveq2d | ⊢ ( 𝑎  =  𝑒  →  ( 𝑃  ·  ( 𝑊  Σg  ( 𝑘  ∈  𝑎  ↦  𝑄 ) ) )  =  ( 𝑃  ·  ( 𝑊  Σg  ( 𝑘  ∈  𝑒  ↦  𝑄 ) ) ) ) | 
						
							| 28 | 24 27 | eqeq12d | ⊢ ( 𝑎  =  𝑒  →  ( ( 𝑊  Σg  ( 𝑘  ∈  𝑎  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( 𝑃  ·  ( 𝑊  Σg  ( 𝑘  ∈  𝑎  ↦  𝑄 ) ) )  ↔  ( 𝑊  Σg  ( 𝑘  ∈  𝑒  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( 𝑃  ·  ( 𝑊  Σg  ( 𝑘  ∈  𝑒  ↦  𝑄 ) ) ) ) ) | 
						
							| 29 | 22 28 | imbi12d | ⊢ ( 𝑎  =  𝑒  →  ( ( ( 𝜑  ∧  𝑎  ⊆  𝐴 )  →  ( 𝑊  Σg  ( 𝑘  ∈  𝑎  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( 𝑃  ·  ( 𝑊  Σg  ( 𝑘  ∈  𝑎  ↦  𝑄 ) ) ) )  ↔  ( ( 𝜑  ∧  𝑒  ⊆  𝐴 )  →  ( 𝑊  Σg  ( 𝑘  ∈  𝑒  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( 𝑃  ·  ( 𝑊  Σg  ( 𝑘  ∈  𝑒  ↦  𝑄 ) ) ) ) ) ) | 
						
							| 30 |  | sseq1 | ⊢ ( 𝑎  =  ( 𝑒  ∪  { 𝑧 } )  →  ( 𝑎  ⊆  𝐴  ↔  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 ) ) | 
						
							| 31 | 30 | anbi2d | ⊢ ( 𝑎  =  ( 𝑒  ∪  { 𝑧 } )  →  ( ( 𝜑  ∧  𝑎  ⊆  𝐴 )  ↔  ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 ) ) ) | 
						
							| 32 |  | mpteq1 | ⊢ ( 𝑎  =  ( 𝑒  ∪  { 𝑧 } )  →  ( 𝑘  ∈  𝑎  ↦  ( 𝑃  ·  𝑄 ) )  =  ( 𝑘  ∈  ( 𝑒  ∪  { 𝑧 } )  ↦  ( 𝑃  ·  𝑄 ) ) ) | 
						
							| 33 | 32 | oveq2d | ⊢ ( 𝑎  =  ( 𝑒  ∪  { 𝑧 } )  →  ( 𝑊  Σg  ( 𝑘  ∈  𝑎  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( 𝑊  Σg  ( 𝑘  ∈  ( 𝑒  ∪  { 𝑧 } )  ↦  ( 𝑃  ·  𝑄 ) ) ) ) | 
						
							| 34 |  | mpteq1 | ⊢ ( 𝑎  =  ( 𝑒  ∪  { 𝑧 } )  →  ( 𝑘  ∈  𝑎  ↦  𝑄 )  =  ( 𝑘  ∈  ( 𝑒  ∪  { 𝑧 } )  ↦  𝑄 ) ) | 
						
							| 35 | 34 | oveq2d | ⊢ ( 𝑎  =  ( 𝑒  ∪  { 𝑧 } )  →  ( 𝑊  Σg  ( 𝑘  ∈  𝑎  ↦  𝑄 ) )  =  ( 𝑊  Σg  ( 𝑘  ∈  ( 𝑒  ∪  { 𝑧 } )  ↦  𝑄 ) ) ) | 
						
							| 36 | 35 | oveq2d | ⊢ ( 𝑎  =  ( 𝑒  ∪  { 𝑧 } )  →  ( 𝑃  ·  ( 𝑊  Σg  ( 𝑘  ∈  𝑎  ↦  𝑄 ) ) )  =  ( 𝑃  ·  ( 𝑊  Σg  ( 𝑘  ∈  ( 𝑒  ∪  { 𝑧 } )  ↦  𝑄 ) ) ) ) | 
						
							| 37 | 33 36 | eqeq12d | ⊢ ( 𝑎  =  ( 𝑒  ∪  { 𝑧 } )  →  ( ( 𝑊  Σg  ( 𝑘  ∈  𝑎  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( 𝑃  ·  ( 𝑊  Σg  ( 𝑘  ∈  𝑎  ↦  𝑄 ) ) )  ↔  ( 𝑊  Σg  ( 𝑘  ∈  ( 𝑒  ∪  { 𝑧 } )  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( 𝑃  ·  ( 𝑊  Σg  ( 𝑘  ∈  ( 𝑒  ∪  { 𝑧 } )  ↦  𝑄 ) ) ) ) ) | 
						
							| 38 | 31 37 | imbi12d | ⊢ ( 𝑎  =  ( 𝑒  ∪  { 𝑧 } )  →  ( ( ( 𝜑  ∧  𝑎  ⊆  𝐴 )  →  ( 𝑊  Σg  ( 𝑘  ∈  𝑎  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( 𝑃  ·  ( 𝑊  Σg  ( 𝑘  ∈  𝑎  ↦  𝑄 ) ) ) )  ↔  ( ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 )  →  ( 𝑊  Σg  ( 𝑘  ∈  ( 𝑒  ∪  { 𝑧 } )  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( 𝑃  ·  ( 𝑊  Σg  ( 𝑘  ∈  ( 𝑒  ∪  { 𝑧 } )  ↦  𝑄 ) ) ) ) ) ) | 
						
							| 39 |  | sseq1 | ⊢ ( 𝑎  =  𝐴  →  ( 𝑎  ⊆  𝐴  ↔  𝐴  ⊆  𝐴 ) ) | 
						
							| 40 | 39 | anbi2d | ⊢ ( 𝑎  =  𝐴  →  ( ( 𝜑  ∧  𝑎  ⊆  𝐴 )  ↔  ( 𝜑  ∧  𝐴  ⊆  𝐴 ) ) ) | 
						
							| 41 |  | mpteq1 | ⊢ ( 𝑎  =  𝐴  →  ( 𝑘  ∈  𝑎  ↦  ( 𝑃  ·  𝑄 ) )  =  ( 𝑘  ∈  𝐴  ↦  ( 𝑃  ·  𝑄 ) ) ) | 
						
							| 42 | 41 | oveq2d | ⊢ ( 𝑎  =  𝐴  →  ( 𝑊  Σg  ( 𝑘  ∈  𝑎  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( 𝑊  Σg  ( 𝑘  ∈  𝐴  ↦  ( 𝑃  ·  𝑄 ) ) ) ) | 
						
							| 43 |  | mpteq1 | ⊢ ( 𝑎  =  𝐴  →  ( 𝑘  ∈  𝑎  ↦  𝑄 )  =  ( 𝑘  ∈  𝐴  ↦  𝑄 ) ) | 
						
							| 44 | 43 | oveq2d | ⊢ ( 𝑎  =  𝐴  →  ( 𝑊  Σg  ( 𝑘  ∈  𝑎  ↦  𝑄 ) )  =  ( 𝑊  Σg  ( 𝑘  ∈  𝐴  ↦  𝑄 ) ) ) | 
						
							| 45 | 44 | oveq2d | ⊢ ( 𝑎  =  𝐴  →  ( 𝑃  ·  ( 𝑊  Σg  ( 𝑘  ∈  𝑎  ↦  𝑄 ) ) )  =  ( 𝑃  ·  ( 𝑊  Σg  ( 𝑘  ∈  𝐴  ↦  𝑄 ) ) ) ) | 
						
							| 46 | 42 45 | eqeq12d | ⊢ ( 𝑎  =  𝐴  →  ( ( 𝑊  Σg  ( 𝑘  ∈  𝑎  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( 𝑃  ·  ( 𝑊  Σg  ( 𝑘  ∈  𝑎  ↦  𝑄 ) ) )  ↔  ( 𝑊  Σg  ( 𝑘  ∈  𝐴  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( 𝑃  ·  ( 𝑊  Σg  ( 𝑘  ∈  𝐴  ↦  𝑄 ) ) ) ) ) | 
						
							| 47 | 40 46 | imbi12d | ⊢ ( 𝑎  =  𝐴  →  ( ( ( 𝜑  ∧  𝑎  ⊆  𝐴 )  →  ( 𝑊  Σg  ( 𝑘  ∈  𝑎  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( 𝑃  ·  ( 𝑊  Σg  ( 𝑘  ∈  𝑎  ↦  𝑄 ) ) ) )  ↔  ( ( 𝜑  ∧  𝐴  ⊆  𝐴 )  →  ( 𝑊  Σg  ( 𝑘  ∈  𝐴  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( 𝑃  ·  ( 𝑊  Σg  ( 𝑘  ∈  𝐴  ↦  𝑄 ) ) ) ) ) ) | 
						
							| 48 | 6 9 | sseldd | ⊢ ( 𝜑  →  𝑃  ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 49 |  | eqid | ⊢ ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐺 ) | 
						
							| 50 | 2 4 49 3 | slmdvs0 | ⊢ ( ( 𝑊  ∈  SLMod  ∧  𝑃  ∈  ( Base ‘ 𝐺 ) )  →  ( 𝑃  ·   0  )  =   0  ) | 
						
							| 51 | 8 48 50 | syl2anc | ⊢ ( 𝜑  →  ( 𝑃  ·   0  )  =   0  ) | 
						
							| 52 | 51 | eqcomd | ⊢ ( 𝜑  →   0   =  ( 𝑃  ·   0  ) ) | 
						
							| 53 |  | mpt0 | ⊢ ( 𝑘  ∈  ∅  ↦  ( 𝑃  ·  𝑄 ) )  =  ∅ | 
						
							| 54 | 53 | oveq2i | ⊢ ( 𝑊  Σg  ( 𝑘  ∈  ∅  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( 𝑊  Σg  ∅ ) | 
						
							| 55 | 3 | gsum0 | ⊢ ( 𝑊  Σg  ∅ )  =   0 | 
						
							| 56 | 54 55 | eqtri | ⊢ ( 𝑊  Σg  ( 𝑘  ∈  ∅  ↦  ( 𝑃  ·  𝑄 ) ) )  =   0 | 
						
							| 57 |  | mpt0 | ⊢ ( 𝑘  ∈  ∅  ↦  𝑄 )  =  ∅ | 
						
							| 58 | 57 | oveq2i | ⊢ ( 𝑊  Σg  ( 𝑘  ∈  ∅  ↦  𝑄 ) )  =  ( 𝑊  Σg  ∅ ) | 
						
							| 59 | 58 55 | eqtri | ⊢ ( 𝑊  Σg  ( 𝑘  ∈  ∅  ↦  𝑄 ) )  =   0 | 
						
							| 60 | 59 | oveq2i | ⊢ ( 𝑃  ·  ( 𝑊  Σg  ( 𝑘  ∈  ∅  ↦  𝑄 ) ) )  =  ( 𝑃  ·   0  ) | 
						
							| 61 | 52 56 60 | 3eqtr4g | ⊢ ( 𝜑  →  ( 𝑊  Σg  ( 𝑘  ∈  ∅  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( 𝑃  ·  ( 𝑊  Σg  ( 𝑘  ∈  ∅  ↦  𝑄 ) ) ) ) | 
						
							| 62 | 61 | adantr | ⊢ ( ( 𝜑  ∧  ∅  ⊆  𝐴 )  →  ( 𝑊  Σg  ( 𝑘  ∈  ∅  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( 𝑃  ·  ( 𝑊  Σg  ( 𝑘  ∈  ∅  ↦  𝑄 ) ) ) ) | 
						
							| 63 |  | ssun1 | ⊢ 𝑒  ⊆  ( 𝑒  ∪  { 𝑧 } ) | 
						
							| 64 |  | sstr2 | ⊢ ( 𝑒  ⊆  ( 𝑒  ∪  { 𝑧 } )  →  ( ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴  →  𝑒  ⊆  𝐴 ) ) | 
						
							| 65 | 63 64 | ax-mp | ⊢ ( ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴  →  𝑒  ⊆  𝐴 ) | 
						
							| 66 | 65 | anim2i | ⊢ ( ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 )  →  ( 𝜑  ∧  𝑒  ⊆  𝐴 ) ) | 
						
							| 67 | 66 | imim1i | ⊢ ( ( ( 𝜑  ∧  𝑒  ⊆  𝐴 )  →  ( 𝑊  Σg  ( 𝑘  ∈  𝑒  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( 𝑃  ·  ( 𝑊  Σg  ( 𝑘  ∈  𝑒  ↦  𝑄 ) ) ) )  →  ( ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 )  →  ( 𝑊  Σg  ( 𝑘  ∈  𝑒  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( 𝑃  ·  ( 𝑊  Σg  ( 𝑘  ∈  𝑒  ↦  𝑄 ) ) ) ) ) | 
						
							| 68 | 8 | ad2antrl | ⊢ ( ( ( 𝑒  ∈  Fin  ∧  ¬  𝑧  ∈  𝑒 )  ∧  ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 ) )  →  𝑊  ∈  SLMod ) | 
						
							| 69 | 48 | ad2antrl | ⊢ ( ( ( 𝑒  ∈  Fin  ∧  ¬  𝑧  ∈  𝑒 )  ∧  ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 ) )  →  𝑃  ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 70 |  | slmdcmn | ⊢ ( 𝑊  ∈  SLMod  →  𝑊  ∈  CMnd ) | 
						
							| 71 | 68 70 | syl | ⊢ ( ( ( 𝑒  ∈  Fin  ∧  ¬  𝑧  ∈  𝑒 )  ∧  ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 ) )  →  𝑊  ∈  CMnd ) | 
						
							| 72 |  | vex | ⊢ 𝑒  ∈  V | 
						
							| 73 | 72 | a1i | ⊢ ( ( ( 𝑒  ∈  Fin  ∧  ¬  𝑧  ∈  𝑒 )  ∧  ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 ) )  →  𝑒  ∈  V ) | 
						
							| 74 |  | simplrl | ⊢ ( ( ( ( 𝑒  ∈  Fin  ∧  ¬  𝑧  ∈  𝑒 )  ∧  ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 ) )  ∧  𝑘  ∈  𝑒 )  →  𝜑 ) | 
						
							| 75 |  | simprr | ⊢ ( ( ( 𝑒  ∈  Fin  ∧  ¬  𝑧  ∈  𝑒 )  ∧  ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 ) )  →  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 ) | 
						
							| 76 | 75 | unssad | ⊢ ( ( ( 𝑒  ∈  Fin  ∧  ¬  𝑧  ∈  𝑒 )  ∧  ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 ) )  →  𝑒  ⊆  𝐴 ) | 
						
							| 77 | 76 | sselda | ⊢ ( ( ( ( 𝑒  ∈  Fin  ∧  ¬  𝑧  ∈  𝑒 )  ∧  ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 ) )  ∧  𝑘  ∈  𝑒 )  →  𝑘  ∈  𝐴 ) | 
						
							| 78 | 74 77 10 | syl2anc | ⊢ ( ( ( ( 𝑒  ∈  Fin  ∧  ¬  𝑧  ∈  𝑒 )  ∧  ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 ) )  ∧  𝑘  ∈  𝑒 )  →  𝑄  ∈  𝐵 ) | 
						
							| 79 | 78 | fmpttd | ⊢ ( ( ( 𝑒  ∈  Fin  ∧  ¬  𝑧  ∈  𝑒 )  ∧  ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 ) )  →  ( 𝑘  ∈  𝑒  ↦  𝑄 ) : 𝑒 ⟶ 𝐵 ) | 
						
							| 80 |  | eqid | ⊢ ( 𝑘  ∈  𝑒  ↦  𝑄 )  =  ( 𝑘  ∈  𝑒  ↦  𝑄 ) | 
						
							| 81 |  | simpll | ⊢ ( ( ( 𝑒  ∈  Fin  ∧  ¬  𝑧  ∈  𝑒 )  ∧  ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 ) )  →  𝑒  ∈  Fin ) | 
						
							| 82 | 3 | fvexi | ⊢  0   ∈  V | 
						
							| 83 | 82 | a1i | ⊢ ( ( ( 𝑒  ∈  Fin  ∧  ¬  𝑧  ∈  𝑒 )  ∧  ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 ) )  →   0   ∈  V ) | 
						
							| 84 | 80 81 78 83 | fsuppmptdm | ⊢ ( ( ( 𝑒  ∈  Fin  ∧  ¬  𝑧  ∈  𝑒 )  ∧  ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 ) )  →  ( 𝑘  ∈  𝑒  ↦  𝑄 )  finSupp   0  ) | 
						
							| 85 | 1 3 71 73 79 84 | gsumcl | ⊢ ( ( ( 𝑒  ∈  Fin  ∧  ¬  𝑧  ∈  𝑒 )  ∧  ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 ) )  →  ( 𝑊  Σg  ( 𝑘  ∈  𝑒  ↦  𝑄 ) )  ∈  𝐵 ) | 
						
							| 86 | 75 | unssbd | ⊢ ( ( ( 𝑒  ∈  Fin  ∧  ¬  𝑧  ∈  𝑒 )  ∧  ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 ) )  →  { 𝑧 }  ⊆  𝐴 ) | 
						
							| 87 |  | vex | ⊢ 𝑧  ∈  V | 
						
							| 88 | 87 | snss | ⊢ ( 𝑧  ∈  𝐴  ↔  { 𝑧 }  ⊆  𝐴 ) | 
						
							| 89 | 86 88 | sylibr | ⊢ ( ( ( 𝑒  ∈  Fin  ∧  ¬  𝑧  ∈  𝑒 )  ∧  ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 ) )  →  𝑧  ∈  𝐴 ) | 
						
							| 90 | 10 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  𝐴 𝑄  ∈  𝐵 ) | 
						
							| 91 | 90 | ad2antrl | ⊢ ( ( ( 𝑒  ∈  Fin  ∧  ¬  𝑧  ∈  𝑒 )  ∧  ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 ) )  →  ∀ 𝑘  ∈  𝐴 𝑄  ∈  𝐵 ) | 
						
							| 92 |  | rspcsbela | ⊢ ( ( 𝑧  ∈  𝐴  ∧  ∀ 𝑘  ∈  𝐴 𝑄  ∈  𝐵 )  →  ⦋ 𝑧  /  𝑘 ⦌ 𝑄  ∈  𝐵 ) | 
						
							| 93 | 89 91 92 | syl2anc | ⊢ ( ( ( 𝑒  ∈  Fin  ∧  ¬  𝑧  ∈  𝑒 )  ∧  ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 ) )  →  ⦋ 𝑧  /  𝑘 ⦌ 𝑄  ∈  𝐵 ) | 
						
							| 94 | 1 5 2 4 49 | slmdvsdi | ⊢ ( ( 𝑊  ∈  SLMod  ∧  ( 𝑃  ∈  ( Base ‘ 𝐺 )  ∧  ( 𝑊  Σg  ( 𝑘  ∈  𝑒  ↦  𝑄 ) )  ∈  𝐵  ∧  ⦋ 𝑧  /  𝑘 ⦌ 𝑄  ∈  𝐵 ) )  →  ( 𝑃  ·  ( ( 𝑊  Σg  ( 𝑘  ∈  𝑒  ↦  𝑄 ) )  +  ⦋ 𝑧  /  𝑘 ⦌ 𝑄 ) )  =  ( ( 𝑃  ·  ( 𝑊  Σg  ( 𝑘  ∈  𝑒  ↦  𝑄 ) ) )  +  ( 𝑃  ·  ⦋ 𝑧  /  𝑘 ⦌ 𝑄 ) ) ) | 
						
							| 95 | 68 69 85 93 94 | syl13anc | ⊢ ( ( ( 𝑒  ∈  Fin  ∧  ¬  𝑧  ∈  𝑒 )  ∧  ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 ) )  →  ( 𝑃  ·  ( ( 𝑊  Σg  ( 𝑘  ∈  𝑒  ↦  𝑄 ) )  +  ⦋ 𝑧  /  𝑘 ⦌ 𝑄 ) )  =  ( ( 𝑃  ·  ( 𝑊  Σg  ( 𝑘  ∈  𝑒  ↦  𝑄 ) ) )  +  ( 𝑃  ·  ⦋ 𝑧  /  𝑘 ⦌ 𝑄 ) ) ) | 
						
							| 96 | 95 | adantr | ⊢ ( ( ( ( 𝑒  ∈  Fin  ∧  ¬  𝑧  ∈  𝑒 )  ∧  ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 ) )  ∧  ( 𝑊  Σg  ( 𝑘  ∈  𝑒  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( 𝑃  ·  ( 𝑊  Σg  ( 𝑘  ∈  𝑒  ↦  𝑄 ) ) ) )  →  ( 𝑃  ·  ( ( 𝑊  Σg  ( 𝑘  ∈  𝑒  ↦  𝑄 ) )  +  ⦋ 𝑧  /  𝑘 ⦌ 𝑄 ) )  =  ( ( 𝑃  ·  ( 𝑊  Σg  ( 𝑘  ∈  𝑒  ↦  𝑄 ) ) )  +  ( 𝑃  ·  ⦋ 𝑧  /  𝑘 ⦌ 𝑄 ) ) ) | 
						
							| 97 |  | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑧  /  𝑘 ⦌ 𝑄 | 
						
							| 98 | 87 | a1i | ⊢ ( ( ( 𝑒  ∈  Fin  ∧  ¬  𝑧  ∈  𝑒 )  ∧  ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 ) )  →  𝑧  ∈  V ) | 
						
							| 99 |  | simplr | ⊢ ( ( ( 𝑒  ∈  Fin  ∧  ¬  𝑧  ∈  𝑒 )  ∧  ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 ) )  →  ¬  𝑧  ∈  𝑒 ) | 
						
							| 100 |  | csbeq1a | ⊢ ( 𝑘  =  𝑧  →  𝑄  =  ⦋ 𝑧  /  𝑘 ⦌ 𝑄 ) | 
						
							| 101 | 97 1 5 71 81 78 98 99 93 100 | gsumunsnf | ⊢ ( ( ( 𝑒  ∈  Fin  ∧  ¬  𝑧  ∈  𝑒 )  ∧  ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 ) )  →  ( 𝑊  Σg  ( 𝑘  ∈  ( 𝑒  ∪  { 𝑧 } )  ↦  𝑄 ) )  =  ( ( 𝑊  Σg  ( 𝑘  ∈  𝑒  ↦  𝑄 ) )  +  ⦋ 𝑧  /  𝑘 ⦌ 𝑄 ) ) | 
						
							| 102 | 101 | oveq2d | ⊢ ( ( ( 𝑒  ∈  Fin  ∧  ¬  𝑧  ∈  𝑒 )  ∧  ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 ) )  →  ( 𝑃  ·  ( 𝑊  Σg  ( 𝑘  ∈  ( 𝑒  ∪  { 𝑧 } )  ↦  𝑄 ) ) )  =  ( 𝑃  ·  ( ( 𝑊  Σg  ( 𝑘  ∈  𝑒  ↦  𝑄 ) )  +  ⦋ 𝑧  /  𝑘 ⦌ 𝑄 ) ) ) | 
						
							| 103 | 102 | adantr | ⊢ ( ( ( ( 𝑒  ∈  Fin  ∧  ¬  𝑧  ∈  𝑒 )  ∧  ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 ) )  ∧  ( 𝑊  Σg  ( 𝑘  ∈  𝑒  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( 𝑃  ·  ( 𝑊  Σg  ( 𝑘  ∈  𝑒  ↦  𝑄 ) ) ) )  →  ( 𝑃  ·  ( 𝑊  Σg  ( 𝑘  ∈  ( 𝑒  ∪  { 𝑧 } )  ↦  𝑄 ) ) )  =  ( 𝑃  ·  ( ( 𝑊  Σg  ( 𝑘  ∈  𝑒  ↦  𝑄 ) )  +  ⦋ 𝑧  /  𝑘 ⦌ 𝑄 ) ) ) | 
						
							| 104 |  | nfcv | ⊢ Ⅎ 𝑘 𝑃 | 
						
							| 105 |  | nfcv | ⊢ Ⅎ 𝑘  · | 
						
							| 106 | 104 105 97 | nfov | ⊢ Ⅎ 𝑘 ( 𝑃  ·  ⦋ 𝑧  /  𝑘 ⦌ 𝑄 ) | 
						
							| 107 | 74 8 | syl | ⊢ ( ( ( ( 𝑒  ∈  Fin  ∧  ¬  𝑧  ∈  𝑒 )  ∧  ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 ) )  ∧  𝑘  ∈  𝑒 )  →  𝑊  ∈  SLMod ) | 
						
							| 108 | 74 48 | syl | ⊢ ( ( ( ( 𝑒  ∈  Fin  ∧  ¬  𝑧  ∈  𝑒 )  ∧  ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 ) )  ∧  𝑘  ∈  𝑒 )  →  𝑃  ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 109 | 1 2 4 49 | slmdvscl | ⊢ ( ( 𝑊  ∈  SLMod  ∧  𝑃  ∈  ( Base ‘ 𝐺 )  ∧  𝑄  ∈  𝐵 )  →  ( 𝑃  ·  𝑄 )  ∈  𝐵 ) | 
						
							| 110 | 107 108 78 109 | syl3anc | ⊢ ( ( ( ( 𝑒  ∈  Fin  ∧  ¬  𝑧  ∈  𝑒 )  ∧  ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 ) )  ∧  𝑘  ∈  𝑒 )  →  ( 𝑃  ·  𝑄 )  ∈  𝐵 ) | 
						
							| 111 | 1 2 4 49 | slmdvscl | ⊢ ( ( 𝑊  ∈  SLMod  ∧  𝑃  ∈  ( Base ‘ 𝐺 )  ∧  ⦋ 𝑧  /  𝑘 ⦌ 𝑄  ∈  𝐵 )  →  ( 𝑃  ·  ⦋ 𝑧  /  𝑘 ⦌ 𝑄 )  ∈  𝐵 ) | 
						
							| 112 | 68 69 93 111 | syl3anc | ⊢ ( ( ( 𝑒  ∈  Fin  ∧  ¬  𝑧  ∈  𝑒 )  ∧  ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 ) )  →  ( 𝑃  ·  ⦋ 𝑧  /  𝑘 ⦌ 𝑄 )  ∈  𝐵 ) | 
						
							| 113 | 100 | oveq2d | ⊢ ( 𝑘  =  𝑧  →  ( 𝑃  ·  𝑄 )  =  ( 𝑃  ·  ⦋ 𝑧  /  𝑘 ⦌ 𝑄 ) ) | 
						
							| 114 | 106 1 5 71 81 110 98 99 112 113 | gsumunsnf | ⊢ ( ( ( 𝑒  ∈  Fin  ∧  ¬  𝑧  ∈  𝑒 )  ∧  ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 ) )  →  ( 𝑊  Σg  ( 𝑘  ∈  ( 𝑒  ∪  { 𝑧 } )  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( ( 𝑊  Σg  ( 𝑘  ∈  𝑒  ↦  ( 𝑃  ·  𝑄 ) ) )  +  ( 𝑃  ·  ⦋ 𝑧  /  𝑘 ⦌ 𝑄 ) ) ) | 
						
							| 115 | 114 | adantr | ⊢ ( ( ( ( 𝑒  ∈  Fin  ∧  ¬  𝑧  ∈  𝑒 )  ∧  ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 ) )  ∧  ( 𝑊  Σg  ( 𝑘  ∈  𝑒  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( 𝑃  ·  ( 𝑊  Σg  ( 𝑘  ∈  𝑒  ↦  𝑄 ) ) ) )  →  ( 𝑊  Σg  ( 𝑘  ∈  ( 𝑒  ∪  { 𝑧 } )  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( ( 𝑊  Σg  ( 𝑘  ∈  𝑒  ↦  ( 𝑃  ·  𝑄 ) ) )  +  ( 𝑃  ·  ⦋ 𝑧  /  𝑘 ⦌ 𝑄 ) ) ) | 
						
							| 116 |  | simpr | ⊢ ( ( ( ( 𝑒  ∈  Fin  ∧  ¬  𝑧  ∈  𝑒 )  ∧  ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 ) )  ∧  ( 𝑊  Σg  ( 𝑘  ∈  𝑒  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( 𝑃  ·  ( 𝑊  Σg  ( 𝑘  ∈  𝑒  ↦  𝑄 ) ) ) )  →  ( 𝑊  Σg  ( 𝑘  ∈  𝑒  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( 𝑃  ·  ( 𝑊  Σg  ( 𝑘  ∈  𝑒  ↦  𝑄 ) ) ) ) | 
						
							| 117 | 116 | oveq1d | ⊢ ( ( ( ( 𝑒  ∈  Fin  ∧  ¬  𝑧  ∈  𝑒 )  ∧  ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 ) )  ∧  ( 𝑊  Σg  ( 𝑘  ∈  𝑒  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( 𝑃  ·  ( 𝑊  Σg  ( 𝑘  ∈  𝑒  ↦  𝑄 ) ) ) )  →  ( ( 𝑊  Σg  ( 𝑘  ∈  𝑒  ↦  ( 𝑃  ·  𝑄 ) ) )  +  ( 𝑃  ·  ⦋ 𝑧  /  𝑘 ⦌ 𝑄 ) )  =  ( ( 𝑃  ·  ( 𝑊  Σg  ( 𝑘  ∈  𝑒  ↦  𝑄 ) ) )  +  ( 𝑃  ·  ⦋ 𝑧  /  𝑘 ⦌ 𝑄 ) ) ) | 
						
							| 118 | 115 117 | eqtrd | ⊢ ( ( ( ( 𝑒  ∈  Fin  ∧  ¬  𝑧  ∈  𝑒 )  ∧  ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 ) )  ∧  ( 𝑊  Σg  ( 𝑘  ∈  𝑒  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( 𝑃  ·  ( 𝑊  Σg  ( 𝑘  ∈  𝑒  ↦  𝑄 ) ) ) )  →  ( 𝑊  Σg  ( 𝑘  ∈  ( 𝑒  ∪  { 𝑧 } )  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( ( 𝑃  ·  ( 𝑊  Σg  ( 𝑘  ∈  𝑒  ↦  𝑄 ) ) )  +  ( 𝑃  ·  ⦋ 𝑧  /  𝑘 ⦌ 𝑄 ) ) ) | 
						
							| 119 | 96 103 118 | 3eqtr4rd | ⊢ ( ( ( ( 𝑒  ∈  Fin  ∧  ¬  𝑧  ∈  𝑒 )  ∧  ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 ) )  ∧  ( 𝑊  Σg  ( 𝑘  ∈  𝑒  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( 𝑃  ·  ( 𝑊  Σg  ( 𝑘  ∈  𝑒  ↦  𝑄 ) ) ) )  →  ( 𝑊  Σg  ( 𝑘  ∈  ( 𝑒  ∪  { 𝑧 } )  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( 𝑃  ·  ( 𝑊  Σg  ( 𝑘  ∈  ( 𝑒  ∪  { 𝑧 } )  ↦  𝑄 ) ) ) ) | 
						
							| 120 | 119 | exp31 | ⊢ ( ( 𝑒  ∈  Fin  ∧  ¬  𝑧  ∈  𝑒 )  →  ( ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 )  →  ( ( 𝑊  Σg  ( 𝑘  ∈  𝑒  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( 𝑃  ·  ( 𝑊  Σg  ( 𝑘  ∈  𝑒  ↦  𝑄 ) ) )  →  ( 𝑊  Σg  ( 𝑘  ∈  ( 𝑒  ∪  { 𝑧 } )  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( 𝑃  ·  ( 𝑊  Σg  ( 𝑘  ∈  ( 𝑒  ∪  { 𝑧 } )  ↦  𝑄 ) ) ) ) ) ) | 
						
							| 121 | 120 | a2d | ⊢ ( ( 𝑒  ∈  Fin  ∧  ¬  𝑧  ∈  𝑒 )  →  ( ( ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 )  →  ( 𝑊  Σg  ( 𝑘  ∈  𝑒  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( 𝑃  ·  ( 𝑊  Σg  ( 𝑘  ∈  𝑒  ↦  𝑄 ) ) ) )  →  ( ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 )  →  ( 𝑊  Σg  ( 𝑘  ∈  ( 𝑒  ∪  { 𝑧 } )  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( 𝑃  ·  ( 𝑊  Σg  ( 𝑘  ∈  ( 𝑒  ∪  { 𝑧 } )  ↦  𝑄 ) ) ) ) ) ) | 
						
							| 122 | 67 121 | syl5 | ⊢ ( ( 𝑒  ∈  Fin  ∧  ¬  𝑧  ∈  𝑒 )  →  ( ( ( 𝜑  ∧  𝑒  ⊆  𝐴 )  →  ( 𝑊  Σg  ( 𝑘  ∈  𝑒  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( 𝑃  ·  ( 𝑊  Σg  ( 𝑘  ∈  𝑒  ↦  𝑄 ) ) ) )  →  ( ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 )  →  ( 𝑊  Σg  ( 𝑘  ∈  ( 𝑒  ∪  { 𝑧 } )  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( 𝑃  ·  ( 𝑊  Σg  ( 𝑘  ∈  ( 𝑒  ∪  { 𝑧 } )  ↦  𝑄 ) ) ) ) ) ) | 
						
							| 123 | 20 29 38 47 62 122 | findcard2s | ⊢ ( 𝐴  ∈  Fin  →  ( ( 𝜑  ∧  𝐴  ⊆  𝐴 )  →  ( 𝑊  Σg  ( 𝑘  ∈  𝐴  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( 𝑃  ·  ( 𝑊  Σg  ( 𝑘  ∈  𝐴  ↦  𝑄 ) ) ) ) ) | 
						
							| 124 | 123 | imp | ⊢ ( ( 𝐴  ∈  Fin  ∧  ( 𝜑  ∧  𝐴  ⊆  𝐴 ) )  →  ( 𝑊  Σg  ( 𝑘  ∈  𝐴  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( 𝑃  ·  ( 𝑊  Σg  ( 𝑘  ∈  𝐴  ↦  𝑄 ) ) ) ) | 
						
							| 125 | 11 124 | mpanr2 | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝜑 )  →  ( 𝑊  Σg  ( 𝑘  ∈  𝐴  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( 𝑃  ·  ( 𝑊  Σg  ( 𝑘  ∈  𝐴  ↦  𝑄 ) ) ) ) | 
						
							| 126 | 7 125 | mpancom | ⊢ ( 𝜑  →  ( 𝑊  Σg  ( 𝑘  ∈  𝐴  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( 𝑃  ·  ( 𝑊  Σg  ( 𝑘  ∈  𝐴  ↦  𝑄 ) ) ) ) |