| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsumvsca.b | ⊢ 𝐵  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | gsumvsca.g | ⊢ 𝐺  =  ( Scalar ‘ 𝑊 ) | 
						
							| 3 |  | gsumvsca.z | ⊢  0   =  ( 0g ‘ 𝑊 ) | 
						
							| 4 |  | gsumvsca.t | ⊢  ·   =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 5 |  | gsumvsca.p | ⊢  +   =  ( +g ‘ 𝑊 ) | 
						
							| 6 |  | gsumvsca.k | ⊢ ( 𝜑  →  𝐾  ⊆  ( Base ‘ 𝐺 ) ) | 
						
							| 7 |  | gsumvsca.a | ⊢ ( 𝜑  →  𝐴  ∈  Fin ) | 
						
							| 8 |  | gsumvsca.w | ⊢ ( 𝜑  →  𝑊  ∈  SLMod ) | 
						
							| 9 |  | gsumvsca2.n | ⊢ ( 𝜑  →  𝑄  ∈  𝐵 ) | 
						
							| 10 |  | gsumvsca2.c | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝑃  ∈  𝐾 ) | 
						
							| 11 |  | ssid | ⊢ 𝐴  ⊆  𝐴 | 
						
							| 12 |  | sseq1 | ⊢ ( 𝑎  =  ∅  →  ( 𝑎  ⊆  𝐴  ↔  ∅  ⊆  𝐴 ) ) | 
						
							| 13 | 12 | anbi2d | ⊢ ( 𝑎  =  ∅  →  ( ( 𝜑  ∧  𝑎  ⊆  𝐴 )  ↔  ( 𝜑  ∧  ∅  ⊆  𝐴 ) ) ) | 
						
							| 14 |  | mpteq1 | ⊢ ( 𝑎  =  ∅  →  ( 𝑘  ∈  𝑎  ↦  ( 𝑃  ·  𝑄 ) )  =  ( 𝑘  ∈  ∅  ↦  ( 𝑃  ·  𝑄 ) ) ) | 
						
							| 15 | 14 | oveq2d | ⊢ ( 𝑎  =  ∅  →  ( 𝑊  Σg  ( 𝑘  ∈  𝑎  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( 𝑊  Σg  ( 𝑘  ∈  ∅  ↦  ( 𝑃  ·  𝑄 ) ) ) ) | 
						
							| 16 |  | mpteq1 | ⊢ ( 𝑎  =  ∅  →  ( 𝑘  ∈  𝑎  ↦  𝑃 )  =  ( 𝑘  ∈  ∅  ↦  𝑃 ) ) | 
						
							| 17 | 16 | oveq2d | ⊢ ( 𝑎  =  ∅  →  ( 𝐺  Σg  ( 𝑘  ∈  𝑎  ↦  𝑃 ) )  =  ( 𝐺  Σg  ( 𝑘  ∈  ∅  ↦  𝑃 ) ) ) | 
						
							| 18 | 17 | oveq1d | ⊢ ( 𝑎  =  ∅  →  ( ( 𝐺  Σg  ( 𝑘  ∈  𝑎  ↦  𝑃 ) )  ·  𝑄 )  =  ( ( 𝐺  Σg  ( 𝑘  ∈  ∅  ↦  𝑃 ) )  ·  𝑄 ) ) | 
						
							| 19 | 15 18 | eqeq12d | ⊢ ( 𝑎  =  ∅  →  ( ( 𝑊  Σg  ( 𝑘  ∈  𝑎  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( ( 𝐺  Σg  ( 𝑘  ∈  𝑎  ↦  𝑃 ) )  ·  𝑄 )  ↔  ( 𝑊  Σg  ( 𝑘  ∈  ∅  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( ( 𝐺  Σg  ( 𝑘  ∈  ∅  ↦  𝑃 ) )  ·  𝑄 ) ) ) | 
						
							| 20 | 13 19 | imbi12d | ⊢ ( 𝑎  =  ∅  →  ( ( ( 𝜑  ∧  𝑎  ⊆  𝐴 )  →  ( 𝑊  Σg  ( 𝑘  ∈  𝑎  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( ( 𝐺  Σg  ( 𝑘  ∈  𝑎  ↦  𝑃 ) )  ·  𝑄 ) )  ↔  ( ( 𝜑  ∧  ∅  ⊆  𝐴 )  →  ( 𝑊  Σg  ( 𝑘  ∈  ∅  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( ( 𝐺  Σg  ( 𝑘  ∈  ∅  ↦  𝑃 ) )  ·  𝑄 ) ) ) ) | 
						
							| 21 |  | sseq1 | ⊢ ( 𝑎  =  𝑒  →  ( 𝑎  ⊆  𝐴  ↔  𝑒  ⊆  𝐴 ) ) | 
						
							| 22 | 21 | anbi2d | ⊢ ( 𝑎  =  𝑒  →  ( ( 𝜑  ∧  𝑎  ⊆  𝐴 )  ↔  ( 𝜑  ∧  𝑒  ⊆  𝐴 ) ) ) | 
						
							| 23 |  | mpteq1 | ⊢ ( 𝑎  =  𝑒  →  ( 𝑘  ∈  𝑎  ↦  ( 𝑃  ·  𝑄 ) )  =  ( 𝑘  ∈  𝑒  ↦  ( 𝑃  ·  𝑄 ) ) ) | 
						
							| 24 | 23 | oveq2d | ⊢ ( 𝑎  =  𝑒  →  ( 𝑊  Σg  ( 𝑘  ∈  𝑎  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( 𝑊  Σg  ( 𝑘  ∈  𝑒  ↦  ( 𝑃  ·  𝑄 ) ) ) ) | 
						
							| 25 |  | mpteq1 | ⊢ ( 𝑎  =  𝑒  →  ( 𝑘  ∈  𝑎  ↦  𝑃 )  =  ( 𝑘  ∈  𝑒  ↦  𝑃 ) ) | 
						
							| 26 | 25 | oveq2d | ⊢ ( 𝑎  =  𝑒  →  ( 𝐺  Σg  ( 𝑘  ∈  𝑎  ↦  𝑃 ) )  =  ( 𝐺  Σg  ( 𝑘  ∈  𝑒  ↦  𝑃 ) ) ) | 
						
							| 27 | 26 | oveq1d | ⊢ ( 𝑎  =  𝑒  →  ( ( 𝐺  Σg  ( 𝑘  ∈  𝑎  ↦  𝑃 ) )  ·  𝑄 )  =  ( ( 𝐺  Σg  ( 𝑘  ∈  𝑒  ↦  𝑃 ) )  ·  𝑄 ) ) | 
						
							| 28 | 24 27 | eqeq12d | ⊢ ( 𝑎  =  𝑒  →  ( ( 𝑊  Σg  ( 𝑘  ∈  𝑎  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( ( 𝐺  Σg  ( 𝑘  ∈  𝑎  ↦  𝑃 ) )  ·  𝑄 )  ↔  ( 𝑊  Σg  ( 𝑘  ∈  𝑒  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( ( 𝐺  Σg  ( 𝑘  ∈  𝑒  ↦  𝑃 ) )  ·  𝑄 ) ) ) | 
						
							| 29 | 22 28 | imbi12d | ⊢ ( 𝑎  =  𝑒  →  ( ( ( 𝜑  ∧  𝑎  ⊆  𝐴 )  →  ( 𝑊  Σg  ( 𝑘  ∈  𝑎  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( ( 𝐺  Σg  ( 𝑘  ∈  𝑎  ↦  𝑃 ) )  ·  𝑄 ) )  ↔  ( ( 𝜑  ∧  𝑒  ⊆  𝐴 )  →  ( 𝑊  Σg  ( 𝑘  ∈  𝑒  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( ( 𝐺  Σg  ( 𝑘  ∈  𝑒  ↦  𝑃 ) )  ·  𝑄 ) ) ) ) | 
						
							| 30 |  | sseq1 | ⊢ ( 𝑎  =  ( 𝑒  ∪  { 𝑧 } )  →  ( 𝑎  ⊆  𝐴  ↔  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 ) ) | 
						
							| 31 | 30 | anbi2d | ⊢ ( 𝑎  =  ( 𝑒  ∪  { 𝑧 } )  →  ( ( 𝜑  ∧  𝑎  ⊆  𝐴 )  ↔  ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 ) ) ) | 
						
							| 32 |  | mpteq1 | ⊢ ( 𝑎  =  ( 𝑒  ∪  { 𝑧 } )  →  ( 𝑘  ∈  𝑎  ↦  ( 𝑃  ·  𝑄 ) )  =  ( 𝑘  ∈  ( 𝑒  ∪  { 𝑧 } )  ↦  ( 𝑃  ·  𝑄 ) ) ) | 
						
							| 33 | 32 | oveq2d | ⊢ ( 𝑎  =  ( 𝑒  ∪  { 𝑧 } )  →  ( 𝑊  Σg  ( 𝑘  ∈  𝑎  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( 𝑊  Σg  ( 𝑘  ∈  ( 𝑒  ∪  { 𝑧 } )  ↦  ( 𝑃  ·  𝑄 ) ) ) ) | 
						
							| 34 |  | mpteq1 | ⊢ ( 𝑎  =  ( 𝑒  ∪  { 𝑧 } )  →  ( 𝑘  ∈  𝑎  ↦  𝑃 )  =  ( 𝑘  ∈  ( 𝑒  ∪  { 𝑧 } )  ↦  𝑃 ) ) | 
						
							| 35 | 34 | oveq2d | ⊢ ( 𝑎  =  ( 𝑒  ∪  { 𝑧 } )  →  ( 𝐺  Σg  ( 𝑘  ∈  𝑎  ↦  𝑃 ) )  =  ( 𝐺  Σg  ( 𝑘  ∈  ( 𝑒  ∪  { 𝑧 } )  ↦  𝑃 ) ) ) | 
						
							| 36 | 35 | oveq1d | ⊢ ( 𝑎  =  ( 𝑒  ∪  { 𝑧 } )  →  ( ( 𝐺  Σg  ( 𝑘  ∈  𝑎  ↦  𝑃 ) )  ·  𝑄 )  =  ( ( 𝐺  Σg  ( 𝑘  ∈  ( 𝑒  ∪  { 𝑧 } )  ↦  𝑃 ) )  ·  𝑄 ) ) | 
						
							| 37 | 33 36 | eqeq12d | ⊢ ( 𝑎  =  ( 𝑒  ∪  { 𝑧 } )  →  ( ( 𝑊  Σg  ( 𝑘  ∈  𝑎  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( ( 𝐺  Σg  ( 𝑘  ∈  𝑎  ↦  𝑃 ) )  ·  𝑄 )  ↔  ( 𝑊  Σg  ( 𝑘  ∈  ( 𝑒  ∪  { 𝑧 } )  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( ( 𝐺  Σg  ( 𝑘  ∈  ( 𝑒  ∪  { 𝑧 } )  ↦  𝑃 ) )  ·  𝑄 ) ) ) | 
						
							| 38 | 31 37 | imbi12d | ⊢ ( 𝑎  =  ( 𝑒  ∪  { 𝑧 } )  →  ( ( ( 𝜑  ∧  𝑎  ⊆  𝐴 )  →  ( 𝑊  Σg  ( 𝑘  ∈  𝑎  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( ( 𝐺  Σg  ( 𝑘  ∈  𝑎  ↦  𝑃 ) )  ·  𝑄 ) )  ↔  ( ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 )  →  ( 𝑊  Σg  ( 𝑘  ∈  ( 𝑒  ∪  { 𝑧 } )  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( ( 𝐺  Σg  ( 𝑘  ∈  ( 𝑒  ∪  { 𝑧 } )  ↦  𝑃 ) )  ·  𝑄 ) ) ) ) | 
						
							| 39 |  | sseq1 | ⊢ ( 𝑎  =  𝐴  →  ( 𝑎  ⊆  𝐴  ↔  𝐴  ⊆  𝐴 ) ) | 
						
							| 40 | 39 | anbi2d | ⊢ ( 𝑎  =  𝐴  →  ( ( 𝜑  ∧  𝑎  ⊆  𝐴 )  ↔  ( 𝜑  ∧  𝐴  ⊆  𝐴 ) ) ) | 
						
							| 41 |  | mpteq1 | ⊢ ( 𝑎  =  𝐴  →  ( 𝑘  ∈  𝑎  ↦  ( 𝑃  ·  𝑄 ) )  =  ( 𝑘  ∈  𝐴  ↦  ( 𝑃  ·  𝑄 ) ) ) | 
						
							| 42 | 41 | oveq2d | ⊢ ( 𝑎  =  𝐴  →  ( 𝑊  Σg  ( 𝑘  ∈  𝑎  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( 𝑊  Σg  ( 𝑘  ∈  𝐴  ↦  ( 𝑃  ·  𝑄 ) ) ) ) | 
						
							| 43 |  | mpteq1 | ⊢ ( 𝑎  =  𝐴  →  ( 𝑘  ∈  𝑎  ↦  𝑃 )  =  ( 𝑘  ∈  𝐴  ↦  𝑃 ) ) | 
						
							| 44 | 43 | oveq2d | ⊢ ( 𝑎  =  𝐴  →  ( 𝐺  Σg  ( 𝑘  ∈  𝑎  ↦  𝑃 ) )  =  ( 𝐺  Σg  ( 𝑘  ∈  𝐴  ↦  𝑃 ) ) ) | 
						
							| 45 | 44 | oveq1d | ⊢ ( 𝑎  =  𝐴  →  ( ( 𝐺  Σg  ( 𝑘  ∈  𝑎  ↦  𝑃 ) )  ·  𝑄 )  =  ( ( 𝐺  Σg  ( 𝑘  ∈  𝐴  ↦  𝑃 ) )  ·  𝑄 ) ) | 
						
							| 46 | 42 45 | eqeq12d | ⊢ ( 𝑎  =  𝐴  →  ( ( 𝑊  Σg  ( 𝑘  ∈  𝑎  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( ( 𝐺  Σg  ( 𝑘  ∈  𝑎  ↦  𝑃 ) )  ·  𝑄 )  ↔  ( 𝑊  Σg  ( 𝑘  ∈  𝐴  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( ( 𝐺  Σg  ( 𝑘  ∈  𝐴  ↦  𝑃 ) )  ·  𝑄 ) ) ) | 
						
							| 47 | 40 46 | imbi12d | ⊢ ( 𝑎  =  𝐴  →  ( ( ( 𝜑  ∧  𝑎  ⊆  𝐴 )  →  ( 𝑊  Σg  ( 𝑘  ∈  𝑎  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( ( 𝐺  Σg  ( 𝑘  ∈  𝑎  ↦  𝑃 ) )  ·  𝑄 ) )  ↔  ( ( 𝜑  ∧  𝐴  ⊆  𝐴 )  →  ( 𝑊  Σg  ( 𝑘  ∈  𝐴  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( ( 𝐺  Σg  ( 𝑘  ∈  𝐴  ↦  𝑃 ) )  ·  𝑄 ) ) ) ) | 
						
							| 48 |  | eqid | ⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 49 | 1 2 4 48 3 | slmd0vs | ⊢ ( ( 𝑊  ∈  SLMod  ∧  𝑄  ∈  𝐵 )  →  ( ( 0g ‘ 𝐺 )  ·  𝑄 )  =   0  ) | 
						
							| 50 | 8 9 49 | syl2anc | ⊢ ( 𝜑  →  ( ( 0g ‘ 𝐺 )  ·  𝑄 )  =   0  ) | 
						
							| 51 | 50 | eqcomd | ⊢ ( 𝜑  →   0   =  ( ( 0g ‘ 𝐺 )  ·  𝑄 ) ) | 
						
							| 52 |  | mpt0 | ⊢ ( 𝑘  ∈  ∅  ↦  ( 𝑃  ·  𝑄 ) )  =  ∅ | 
						
							| 53 | 52 | oveq2i | ⊢ ( 𝑊  Σg  ( 𝑘  ∈  ∅  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( 𝑊  Σg  ∅ ) | 
						
							| 54 | 3 | gsum0 | ⊢ ( 𝑊  Σg  ∅ )  =   0 | 
						
							| 55 | 53 54 | eqtri | ⊢ ( 𝑊  Σg  ( 𝑘  ∈  ∅  ↦  ( 𝑃  ·  𝑄 ) ) )  =   0 | 
						
							| 56 |  | mpt0 | ⊢ ( 𝑘  ∈  ∅  ↦  𝑃 )  =  ∅ | 
						
							| 57 | 56 | oveq2i | ⊢ ( 𝐺  Σg  ( 𝑘  ∈  ∅  ↦  𝑃 ) )  =  ( 𝐺  Σg  ∅ ) | 
						
							| 58 | 48 | gsum0 | ⊢ ( 𝐺  Σg  ∅ )  =  ( 0g ‘ 𝐺 ) | 
						
							| 59 | 57 58 | eqtri | ⊢ ( 𝐺  Σg  ( 𝑘  ∈  ∅  ↦  𝑃 ) )  =  ( 0g ‘ 𝐺 ) | 
						
							| 60 | 59 | oveq1i | ⊢ ( ( 𝐺  Σg  ( 𝑘  ∈  ∅  ↦  𝑃 ) )  ·  𝑄 )  =  ( ( 0g ‘ 𝐺 )  ·  𝑄 ) | 
						
							| 61 | 51 55 60 | 3eqtr4g | ⊢ ( 𝜑  →  ( 𝑊  Σg  ( 𝑘  ∈  ∅  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( ( 𝐺  Σg  ( 𝑘  ∈  ∅  ↦  𝑃 ) )  ·  𝑄 ) ) | 
						
							| 62 | 61 | adantr | ⊢ ( ( 𝜑  ∧  ∅  ⊆  𝐴 )  →  ( 𝑊  Σg  ( 𝑘  ∈  ∅  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( ( 𝐺  Σg  ( 𝑘  ∈  ∅  ↦  𝑃 ) )  ·  𝑄 ) ) | 
						
							| 63 |  | ssun1 | ⊢ 𝑒  ⊆  ( 𝑒  ∪  { 𝑧 } ) | 
						
							| 64 |  | sstr2 | ⊢ ( 𝑒  ⊆  ( 𝑒  ∪  { 𝑧 } )  →  ( ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴  →  𝑒  ⊆  𝐴 ) ) | 
						
							| 65 | 63 64 | ax-mp | ⊢ ( ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴  →  𝑒  ⊆  𝐴 ) | 
						
							| 66 | 65 | anim2i | ⊢ ( ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 )  →  ( 𝜑  ∧  𝑒  ⊆  𝐴 ) ) | 
						
							| 67 | 66 | imim1i | ⊢ ( ( ( 𝜑  ∧  𝑒  ⊆  𝐴 )  →  ( 𝑊  Σg  ( 𝑘  ∈  𝑒  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( ( 𝐺  Σg  ( 𝑘  ∈  𝑒  ↦  𝑃 ) )  ·  𝑄 ) )  →  ( ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 )  →  ( 𝑊  Σg  ( 𝑘  ∈  𝑒  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( ( 𝐺  Σg  ( 𝑘  ∈  𝑒  ↦  𝑃 ) )  ·  𝑄 ) ) ) | 
						
							| 68 | 8 | ad2antrl | ⊢ ( ( ( 𝑒  ∈  Fin  ∧  ¬  𝑧  ∈  𝑒 )  ∧  ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 ) )  →  𝑊  ∈  SLMod ) | 
						
							| 69 |  | eqid | ⊢ ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐺 ) | 
						
							| 70 | 2 | slmdsrg | ⊢ ( 𝑊  ∈  SLMod  →  𝐺  ∈  SRing ) | 
						
							| 71 |  | srgcmn | ⊢ ( 𝐺  ∈  SRing  →  𝐺  ∈  CMnd ) | 
						
							| 72 | 68 70 71 | 3syl | ⊢ ( ( ( 𝑒  ∈  Fin  ∧  ¬  𝑧  ∈  𝑒 )  ∧  ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 ) )  →  𝐺  ∈  CMnd ) | 
						
							| 73 |  | vex | ⊢ 𝑒  ∈  V | 
						
							| 74 | 73 | a1i | ⊢ ( ( ( 𝑒  ∈  Fin  ∧  ¬  𝑧  ∈  𝑒 )  ∧  ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 ) )  →  𝑒  ∈  V ) | 
						
							| 75 |  | simplrl | ⊢ ( ( ( ( 𝑒  ∈  Fin  ∧  ¬  𝑧  ∈  𝑒 )  ∧  ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 ) )  ∧  𝑘  ∈  𝑒 )  →  𝜑 ) | 
						
							| 76 |  | simprr | ⊢ ( ( ( 𝑒  ∈  Fin  ∧  ¬  𝑧  ∈  𝑒 )  ∧  ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 ) )  →  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 ) | 
						
							| 77 | 76 | unssad | ⊢ ( ( ( 𝑒  ∈  Fin  ∧  ¬  𝑧  ∈  𝑒 )  ∧  ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 ) )  →  𝑒  ⊆  𝐴 ) | 
						
							| 78 | 77 | sselda | ⊢ ( ( ( ( 𝑒  ∈  Fin  ∧  ¬  𝑧  ∈  𝑒 )  ∧  ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 ) )  ∧  𝑘  ∈  𝑒 )  →  𝑘  ∈  𝐴 ) | 
						
							| 79 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐾  ⊆  ( Base ‘ 𝐺 ) ) | 
						
							| 80 | 79 10 | sseldd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝑃  ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 81 | 75 78 80 | syl2anc | ⊢ ( ( ( ( 𝑒  ∈  Fin  ∧  ¬  𝑧  ∈  𝑒 )  ∧  ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 ) )  ∧  𝑘  ∈  𝑒 )  →  𝑃  ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 82 | 81 | fmpttd | ⊢ ( ( ( 𝑒  ∈  Fin  ∧  ¬  𝑧  ∈  𝑒 )  ∧  ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 ) )  →  ( 𝑘  ∈  𝑒  ↦  𝑃 ) : 𝑒 ⟶ ( Base ‘ 𝐺 ) ) | 
						
							| 83 |  | eqid | ⊢ ( 𝑘  ∈  𝑒  ↦  𝑃 )  =  ( 𝑘  ∈  𝑒  ↦  𝑃 ) | 
						
							| 84 |  | simpll | ⊢ ( ( ( 𝑒  ∈  Fin  ∧  ¬  𝑧  ∈  𝑒 )  ∧  ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 ) )  →  𝑒  ∈  Fin ) | 
						
							| 85 | 75 78 10 | syl2anc | ⊢ ( ( ( ( 𝑒  ∈  Fin  ∧  ¬  𝑧  ∈  𝑒 )  ∧  ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 ) )  ∧  𝑘  ∈  𝑒 )  →  𝑃  ∈  𝐾 ) | 
						
							| 86 |  | fvexd | ⊢ ( ( ( 𝑒  ∈  Fin  ∧  ¬  𝑧  ∈  𝑒 )  ∧  ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 ) )  →  ( 0g ‘ 𝐺 )  ∈  V ) | 
						
							| 87 | 83 84 85 86 | fsuppmptdm | ⊢ ( ( ( 𝑒  ∈  Fin  ∧  ¬  𝑧  ∈  𝑒 )  ∧  ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 ) )  →  ( 𝑘  ∈  𝑒  ↦  𝑃 )  finSupp  ( 0g ‘ 𝐺 ) ) | 
						
							| 88 | 69 48 72 74 82 87 | gsumcl | ⊢ ( ( ( 𝑒  ∈  Fin  ∧  ¬  𝑧  ∈  𝑒 )  ∧  ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 ) )  →  ( 𝐺  Σg  ( 𝑘  ∈  𝑒  ↦  𝑃 ) )  ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 89 | 76 | unssbd | ⊢ ( ( ( 𝑒  ∈  Fin  ∧  ¬  𝑧  ∈  𝑒 )  ∧  ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 ) )  →  { 𝑧 }  ⊆  𝐴 ) | 
						
							| 90 |  | vex | ⊢ 𝑧  ∈  V | 
						
							| 91 | 90 | snss | ⊢ ( 𝑧  ∈  𝐴  ↔  { 𝑧 }  ⊆  𝐴 ) | 
						
							| 92 | 89 91 | sylibr | ⊢ ( ( ( 𝑒  ∈  Fin  ∧  ¬  𝑧  ∈  𝑒 )  ∧  ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 ) )  →  𝑧  ∈  𝐴 ) | 
						
							| 93 | 80 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  𝐴 𝑃  ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 94 | 93 | ad2antrl | ⊢ ( ( ( 𝑒  ∈  Fin  ∧  ¬  𝑧  ∈  𝑒 )  ∧  ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 ) )  →  ∀ 𝑘  ∈  𝐴 𝑃  ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 95 |  | rspcsbela | ⊢ ( ( 𝑧  ∈  𝐴  ∧  ∀ 𝑘  ∈  𝐴 𝑃  ∈  ( Base ‘ 𝐺 ) )  →  ⦋ 𝑧  /  𝑘 ⦌ 𝑃  ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 96 | 92 94 95 | syl2anc | ⊢ ( ( ( 𝑒  ∈  Fin  ∧  ¬  𝑧  ∈  𝑒 )  ∧  ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 ) )  →  ⦋ 𝑧  /  𝑘 ⦌ 𝑃  ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 97 | 9 | ad2antrl | ⊢ ( ( ( 𝑒  ∈  Fin  ∧  ¬  𝑧  ∈  𝑒 )  ∧  ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 ) )  →  𝑄  ∈  𝐵 ) | 
						
							| 98 |  | eqid | ⊢ ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐺 ) | 
						
							| 99 | 1 5 2 4 69 98 | slmdvsdir | ⊢ ( ( 𝑊  ∈  SLMod  ∧  ( ( 𝐺  Σg  ( 𝑘  ∈  𝑒  ↦  𝑃 ) )  ∈  ( Base ‘ 𝐺 )  ∧  ⦋ 𝑧  /  𝑘 ⦌ 𝑃  ∈  ( Base ‘ 𝐺 )  ∧  𝑄  ∈  𝐵 ) )  →  ( ( ( 𝐺  Σg  ( 𝑘  ∈  𝑒  ↦  𝑃 ) ) ( +g ‘ 𝐺 ) ⦋ 𝑧  /  𝑘 ⦌ 𝑃 )  ·  𝑄 )  =  ( ( ( 𝐺  Σg  ( 𝑘  ∈  𝑒  ↦  𝑃 ) )  ·  𝑄 )  +  ( ⦋ 𝑧  /  𝑘 ⦌ 𝑃  ·  𝑄 ) ) ) | 
						
							| 100 | 68 88 96 97 99 | syl13anc | ⊢ ( ( ( 𝑒  ∈  Fin  ∧  ¬  𝑧  ∈  𝑒 )  ∧  ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 ) )  →  ( ( ( 𝐺  Σg  ( 𝑘  ∈  𝑒  ↦  𝑃 ) ) ( +g ‘ 𝐺 ) ⦋ 𝑧  /  𝑘 ⦌ 𝑃 )  ·  𝑄 )  =  ( ( ( 𝐺  Σg  ( 𝑘  ∈  𝑒  ↦  𝑃 ) )  ·  𝑄 )  +  ( ⦋ 𝑧  /  𝑘 ⦌ 𝑃  ·  𝑄 ) ) ) | 
						
							| 101 | 100 | adantr | ⊢ ( ( ( ( 𝑒  ∈  Fin  ∧  ¬  𝑧  ∈  𝑒 )  ∧  ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 ) )  ∧  ( 𝑊  Σg  ( 𝑘  ∈  𝑒  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( ( 𝐺  Σg  ( 𝑘  ∈  𝑒  ↦  𝑃 ) )  ·  𝑄 ) )  →  ( ( ( 𝐺  Σg  ( 𝑘  ∈  𝑒  ↦  𝑃 ) ) ( +g ‘ 𝐺 ) ⦋ 𝑧  /  𝑘 ⦌ 𝑃 )  ·  𝑄 )  =  ( ( ( 𝐺  Σg  ( 𝑘  ∈  𝑒  ↦  𝑃 ) )  ·  𝑄 )  +  ( ⦋ 𝑧  /  𝑘 ⦌ 𝑃  ·  𝑄 ) ) ) | 
						
							| 102 |  | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑧  /  𝑘 ⦌ 𝑃 | 
						
							| 103 | 90 | a1i | ⊢ ( ( ( 𝑒  ∈  Fin  ∧  ¬  𝑧  ∈  𝑒 )  ∧  ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 ) )  →  𝑧  ∈  V ) | 
						
							| 104 |  | simplr | ⊢ ( ( ( 𝑒  ∈  Fin  ∧  ¬  𝑧  ∈  𝑒 )  ∧  ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 ) )  →  ¬  𝑧  ∈  𝑒 ) | 
						
							| 105 |  | csbeq1a | ⊢ ( 𝑘  =  𝑧  →  𝑃  =  ⦋ 𝑧  /  𝑘 ⦌ 𝑃 ) | 
						
							| 106 | 102 69 98 72 84 81 103 104 96 105 | gsumunsnf | ⊢ ( ( ( 𝑒  ∈  Fin  ∧  ¬  𝑧  ∈  𝑒 )  ∧  ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 ) )  →  ( 𝐺  Σg  ( 𝑘  ∈  ( 𝑒  ∪  { 𝑧 } )  ↦  𝑃 ) )  =  ( ( 𝐺  Σg  ( 𝑘  ∈  𝑒  ↦  𝑃 ) ) ( +g ‘ 𝐺 ) ⦋ 𝑧  /  𝑘 ⦌ 𝑃 ) ) | 
						
							| 107 | 106 | oveq1d | ⊢ ( ( ( 𝑒  ∈  Fin  ∧  ¬  𝑧  ∈  𝑒 )  ∧  ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 ) )  →  ( ( 𝐺  Σg  ( 𝑘  ∈  ( 𝑒  ∪  { 𝑧 } )  ↦  𝑃 ) )  ·  𝑄 )  =  ( ( ( 𝐺  Σg  ( 𝑘  ∈  𝑒  ↦  𝑃 ) ) ( +g ‘ 𝐺 ) ⦋ 𝑧  /  𝑘 ⦌ 𝑃 )  ·  𝑄 ) ) | 
						
							| 108 | 107 | adantr | ⊢ ( ( ( ( 𝑒  ∈  Fin  ∧  ¬  𝑧  ∈  𝑒 )  ∧  ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 ) )  ∧  ( 𝑊  Σg  ( 𝑘  ∈  𝑒  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( ( 𝐺  Σg  ( 𝑘  ∈  𝑒  ↦  𝑃 ) )  ·  𝑄 ) )  →  ( ( 𝐺  Σg  ( 𝑘  ∈  ( 𝑒  ∪  { 𝑧 } )  ↦  𝑃 ) )  ·  𝑄 )  =  ( ( ( 𝐺  Σg  ( 𝑘  ∈  𝑒  ↦  𝑃 ) ) ( +g ‘ 𝐺 ) ⦋ 𝑧  /  𝑘 ⦌ 𝑃 )  ·  𝑄 ) ) | 
						
							| 109 |  | nfcv | ⊢ Ⅎ 𝑘  · | 
						
							| 110 |  | nfcv | ⊢ Ⅎ 𝑘 𝑄 | 
						
							| 111 | 102 109 110 | nfov | ⊢ Ⅎ 𝑘 ( ⦋ 𝑧  /  𝑘 ⦌ 𝑃  ·  𝑄 ) | 
						
							| 112 |  | slmdcmn | ⊢ ( 𝑊  ∈  SLMod  →  𝑊  ∈  CMnd ) | 
						
							| 113 | 68 112 | syl | ⊢ ( ( ( 𝑒  ∈  Fin  ∧  ¬  𝑧  ∈  𝑒 )  ∧  ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 ) )  →  𝑊  ∈  CMnd ) | 
						
							| 114 | 75 8 | syl | ⊢ ( ( ( ( 𝑒  ∈  Fin  ∧  ¬  𝑧  ∈  𝑒 )  ∧  ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 ) )  ∧  𝑘  ∈  𝑒 )  →  𝑊  ∈  SLMod ) | 
						
							| 115 | 75 9 | syl | ⊢ ( ( ( ( 𝑒  ∈  Fin  ∧  ¬  𝑧  ∈  𝑒 )  ∧  ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 ) )  ∧  𝑘  ∈  𝑒 )  →  𝑄  ∈  𝐵 ) | 
						
							| 116 | 1 2 4 69 | slmdvscl | ⊢ ( ( 𝑊  ∈  SLMod  ∧  𝑃  ∈  ( Base ‘ 𝐺 )  ∧  𝑄  ∈  𝐵 )  →  ( 𝑃  ·  𝑄 )  ∈  𝐵 ) | 
						
							| 117 | 114 81 115 116 | syl3anc | ⊢ ( ( ( ( 𝑒  ∈  Fin  ∧  ¬  𝑧  ∈  𝑒 )  ∧  ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 ) )  ∧  𝑘  ∈  𝑒 )  →  ( 𝑃  ·  𝑄 )  ∈  𝐵 ) | 
						
							| 118 | 1 2 4 69 | slmdvscl | ⊢ ( ( 𝑊  ∈  SLMod  ∧  ⦋ 𝑧  /  𝑘 ⦌ 𝑃  ∈  ( Base ‘ 𝐺 )  ∧  𝑄  ∈  𝐵 )  →  ( ⦋ 𝑧  /  𝑘 ⦌ 𝑃  ·  𝑄 )  ∈  𝐵 ) | 
						
							| 119 | 68 96 97 118 | syl3anc | ⊢ ( ( ( 𝑒  ∈  Fin  ∧  ¬  𝑧  ∈  𝑒 )  ∧  ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 ) )  →  ( ⦋ 𝑧  /  𝑘 ⦌ 𝑃  ·  𝑄 )  ∈  𝐵 ) | 
						
							| 120 | 105 | oveq1d | ⊢ ( 𝑘  =  𝑧  →  ( 𝑃  ·  𝑄 )  =  ( ⦋ 𝑧  /  𝑘 ⦌ 𝑃  ·  𝑄 ) ) | 
						
							| 121 | 111 1 5 113 84 117 103 104 119 120 | gsumunsnf | ⊢ ( ( ( 𝑒  ∈  Fin  ∧  ¬  𝑧  ∈  𝑒 )  ∧  ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 ) )  →  ( 𝑊  Σg  ( 𝑘  ∈  ( 𝑒  ∪  { 𝑧 } )  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( ( 𝑊  Σg  ( 𝑘  ∈  𝑒  ↦  ( 𝑃  ·  𝑄 ) ) )  +  ( ⦋ 𝑧  /  𝑘 ⦌ 𝑃  ·  𝑄 ) ) ) | 
						
							| 122 | 121 | adantr | ⊢ ( ( ( ( 𝑒  ∈  Fin  ∧  ¬  𝑧  ∈  𝑒 )  ∧  ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 ) )  ∧  ( 𝑊  Σg  ( 𝑘  ∈  𝑒  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( ( 𝐺  Σg  ( 𝑘  ∈  𝑒  ↦  𝑃 ) )  ·  𝑄 ) )  →  ( 𝑊  Σg  ( 𝑘  ∈  ( 𝑒  ∪  { 𝑧 } )  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( ( 𝑊  Σg  ( 𝑘  ∈  𝑒  ↦  ( 𝑃  ·  𝑄 ) ) )  +  ( ⦋ 𝑧  /  𝑘 ⦌ 𝑃  ·  𝑄 ) ) ) | 
						
							| 123 |  | simpr | ⊢ ( ( ( ( 𝑒  ∈  Fin  ∧  ¬  𝑧  ∈  𝑒 )  ∧  ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 ) )  ∧  ( 𝑊  Σg  ( 𝑘  ∈  𝑒  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( ( 𝐺  Σg  ( 𝑘  ∈  𝑒  ↦  𝑃 ) )  ·  𝑄 ) )  →  ( 𝑊  Σg  ( 𝑘  ∈  𝑒  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( ( 𝐺  Σg  ( 𝑘  ∈  𝑒  ↦  𝑃 ) )  ·  𝑄 ) ) | 
						
							| 124 | 123 | oveq1d | ⊢ ( ( ( ( 𝑒  ∈  Fin  ∧  ¬  𝑧  ∈  𝑒 )  ∧  ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 ) )  ∧  ( 𝑊  Σg  ( 𝑘  ∈  𝑒  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( ( 𝐺  Σg  ( 𝑘  ∈  𝑒  ↦  𝑃 ) )  ·  𝑄 ) )  →  ( ( 𝑊  Σg  ( 𝑘  ∈  𝑒  ↦  ( 𝑃  ·  𝑄 ) ) )  +  ( ⦋ 𝑧  /  𝑘 ⦌ 𝑃  ·  𝑄 ) )  =  ( ( ( 𝐺  Σg  ( 𝑘  ∈  𝑒  ↦  𝑃 ) )  ·  𝑄 )  +  ( ⦋ 𝑧  /  𝑘 ⦌ 𝑃  ·  𝑄 ) ) ) | 
						
							| 125 | 122 124 | eqtrd | ⊢ ( ( ( ( 𝑒  ∈  Fin  ∧  ¬  𝑧  ∈  𝑒 )  ∧  ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 ) )  ∧  ( 𝑊  Σg  ( 𝑘  ∈  𝑒  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( ( 𝐺  Σg  ( 𝑘  ∈  𝑒  ↦  𝑃 ) )  ·  𝑄 ) )  →  ( 𝑊  Σg  ( 𝑘  ∈  ( 𝑒  ∪  { 𝑧 } )  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( ( ( 𝐺  Σg  ( 𝑘  ∈  𝑒  ↦  𝑃 ) )  ·  𝑄 )  +  ( ⦋ 𝑧  /  𝑘 ⦌ 𝑃  ·  𝑄 ) ) ) | 
						
							| 126 | 101 108 125 | 3eqtr4rd | ⊢ ( ( ( ( 𝑒  ∈  Fin  ∧  ¬  𝑧  ∈  𝑒 )  ∧  ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 ) )  ∧  ( 𝑊  Σg  ( 𝑘  ∈  𝑒  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( ( 𝐺  Σg  ( 𝑘  ∈  𝑒  ↦  𝑃 ) )  ·  𝑄 ) )  →  ( 𝑊  Σg  ( 𝑘  ∈  ( 𝑒  ∪  { 𝑧 } )  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( ( 𝐺  Σg  ( 𝑘  ∈  ( 𝑒  ∪  { 𝑧 } )  ↦  𝑃 ) )  ·  𝑄 ) ) | 
						
							| 127 | 126 | exp31 | ⊢ ( ( 𝑒  ∈  Fin  ∧  ¬  𝑧  ∈  𝑒 )  →  ( ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 )  →  ( ( 𝑊  Σg  ( 𝑘  ∈  𝑒  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( ( 𝐺  Σg  ( 𝑘  ∈  𝑒  ↦  𝑃 ) )  ·  𝑄 )  →  ( 𝑊  Σg  ( 𝑘  ∈  ( 𝑒  ∪  { 𝑧 } )  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( ( 𝐺  Σg  ( 𝑘  ∈  ( 𝑒  ∪  { 𝑧 } )  ↦  𝑃 ) )  ·  𝑄 ) ) ) ) | 
						
							| 128 | 127 | a2d | ⊢ ( ( 𝑒  ∈  Fin  ∧  ¬  𝑧  ∈  𝑒 )  →  ( ( ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 )  →  ( 𝑊  Σg  ( 𝑘  ∈  𝑒  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( ( 𝐺  Σg  ( 𝑘  ∈  𝑒  ↦  𝑃 ) )  ·  𝑄 ) )  →  ( ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 )  →  ( 𝑊  Σg  ( 𝑘  ∈  ( 𝑒  ∪  { 𝑧 } )  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( ( 𝐺  Σg  ( 𝑘  ∈  ( 𝑒  ∪  { 𝑧 } )  ↦  𝑃 ) )  ·  𝑄 ) ) ) ) | 
						
							| 129 | 67 128 | syl5 | ⊢ ( ( 𝑒  ∈  Fin  ∧  ¬  𝑧  ∈  𝑒 )  →  ( ( ( 𝜑  ∧  𝑒  ⊆  𝐴 )  →  ( 𝑊  Σg  ( 𝑘  ∈  𝑒  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( ( 𝐺  Σg  ( 𝑘  ∈  𝑒  ↦  𝑃 ) )  ·  𝑄 ) )  →  ( ( 𝜑  ∧  ( 𝑒  ∪  { 𝑧 } )  ⊆  𝐴 )  →  ( 𝑊  Σg  ( 𝑘  ∈  ( 𝑒  ∪  { 𝑧 } )  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( ( 𝐺  Σg  ( 𝑘  ∈  ( 𝑒  ∪  { 𝑧 } )  ↦  𝑃 ) )  ·  𝑄 ) ) ) ) | 
						
							| 130 | 20 29 38 47 62 129 | findcard2s | ⊢ ( 𝐴  ∈  Fin  →  ( ( 𝜑  ∧  𝐴  ⊆  𝐴 )  →  ( 𝑊  Σg  ( 𝑘  ∈  𝐴  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( ( 𝐺  Σg  ( 𝑘  ∈  𝐴  ↦  𝑃 ) )  ·  𝑄 ) ) ) | 
						
							| 131 | 130 | imp | ⊢ ( ( 𝐴  ∈  Fin  ∧  ( 𝜑  ∧  𝐴  ⊆  𝐴 ) )  →  ( 𝑊  Σg  ( 𝑘  ∈  𝐴  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( ( 𝐺  Σg  ( 𝑘  ∈  𝐴  ↦  𝑃 ) )  ·  𝑄 ) ) | 
						
							| 132 | 11 131 | mpanr2 | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝜑 )  →  ( 𝑊  Σg  ( 𝑘  ∈  𝐴  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( ( 𝐺  Σg  ( 𝑘  ∈  𝐴  ↦  𝑃 ) )  ·  𝑄 ) ) | 
						
							| 133 | 7 132 | mpancom | ⊢ ( 𝜑  →  ( 𝑊  Σg  ( 𝑘  ∈  𝐴  ↦  ( 𝑃  ·  𝑄 ) ) )  =  ( ( 𝐺  Σg  ( 𝑘  ∈  𝐴  ↦  𝑃 ) )  ·  𝑄 ) ) |