Metamath Proof Explorer


Theorem sltdivmuld

Description: Surreal less-than relationship between division and multiplication. (Contributed by Scott Fenton, 16-Mar-2025)

Ref Expression
Hypotheses sltdivmuld.1
|- ( ph -> A e. No )
sltdivmuld.2
|- ( ph -> B e. No )
sltdivmuld.3
|- ( ph -> C e. No )
sltdivmuld.4
|- ( ph -> 0s 
Assertion sltdivmuld
|- ( ph -> ( ( A /su C )  A 

Proof

Step Hyp Ref Expression
1 sltdivmuld.1
 |-  ( ph -> A e. No )
2 sltdivmuld.2
 |-  ( ph -> B e. No )
3 sltdivmuld.3
 |-  ( ph -> C e. No )
4 sltdivmuld.4
 |-  ( ph -> 0s 
5 4 sgt0ne0d
 |-  ( ph -> C =/= 0s )
6 3 5 recsexd
 |-  ( ph -> E. x e. No ( C x.s x ) = 1s )
7 1 2 3 4 6 sltdivmulwd
 |-  ( ph -> ( ( A /su C )  A