| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sltdivmulwd.1 |
|- ( ph -> A e. No ) |
| 2 |
|
sltdivmulwd.2 |
|- ( ph -> B e. No ) |
| 3 |
|
sltdivmulwd.3 |
|- ( ph -> C e. No ) |
| 4 |
|
sltdivmulwd.4 |
|- ( ph -> 0s |
| 5 |
|
sltdivmulwd.5 |
|- ( ph -> E. x e. No ( C x.s x ) = 1s ) |
| 6 |
4
|
sgt0ne0d |
|- ( ph -> C =/= 0s ) |
| 7 |
1 3 6 5
|
divsclwd |
|- ( ph -> ( A /su C ) e. No ) |
| 8 |
7 2 3 4
|
sltmul2d |
|- ( ph -> ( ( A /su C ) ( C x.s ( A /su C ) ) |
| 9 |
1 3 6 5
|
divscan2wd |
|- ( ph -> ( C x.s ( A /su C ) ) = A ) |
| 10 |
9
|
breq1d |
|- ( ph -> ( ( C x.s ( A /su C ) ) A |
| 11 |
8 10
|
bitrd |
|- ( ph -> ( ( A /su C ) A |