Description: Surreal less-than relationship between division and multiplication. Weak version. (Contributed by Scott Fenton, 14-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sltdivmulwd.1 | |- ( ph -> A e. No ) |
|
| sltdivmulwd.2 | |- ( ph -> B e. No ) |
||
| sltdivmulwd.3 | |- ( ph -> C e. No ) |
||
| sltdivmulwd.4 | |- ( ph -> 0s |
||
| sltdivmulwd.5 | |- ( ph -> E. x e. No ( C x.s x ) = 1s ) |
||
| Assertion | sltdivmul2wd | |- ( ph -> ( ( A /su C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sltdivmulwd.1 | |- ( ph -> A e. No ) |
|
| 2 | sltdivmulwd.2 | |- ( ph -> B e. No ) |
|
| 3 | sltdivmulwd.3 | |- ( ph -> C e. No ) |
|
| 4 | sltdivmulwd.4 | |- ( ph -> 0s |
|
| 5 | sltdivmulwd.5 | |- ( ph -> E. x e. No ( C x.s x ) = 1s ) |
|
| 6 | 1 2 3 4 5 | sltdivmulwd | |- ( ph -> ( ( A /su C ) |
| 7 | 2 3 | mulscomd | |- ( ph -> ( B x.s C ) = ( C x.s B ) ) |
| 8 | 7 | breq2d | |- ( ph -> ( A |
| 9 | 6 8 | bitr4d | |- ( ph -> ( ( A /su C ) |