| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sltdivmulwd.1 |
|- ( ph -> A e. No ) |
| 2 |
|
sltdivmulwd.2 |
|- ( ph -> B e. No ) |
| 3 |
|
sltdivmulwd.3 |
|- ( ph -> C e. No ) |
| 4 |
|
sltdivmulwd.4 |
|- ( ph -> 0s |
| 5 |
|
sltdivmulwd.5 |
|- ( ph -> E. x e. No ( C x.s x ) = 1s ) |
| 6 |
4
|
sgt0ne0d |
|- ( ph -> C =/= 0s ) |
| 7 |
2 3 6 5
|
divsclwd |
|- ( ph -> ( B /su C ) e. No ) |
| 8 |
1 7 3 4
|
sltmul1d |
|- ( ph -> ( A ( A x.s C ) |
| 9 |
2 3 6 5
|
divscan1wd |
|- ( ph -> ( ( B /su C ) x.s C ) = B ) |
| 10 |
9
|
breq2d |
|- ( ph -> ( ( A x.s C ) ( A x.s C ) |
| 11 |
8 10
|
bitr2d |
|- ( ph -> ( ( A x.s C ) A |