Metamath Proof Explorer


Theorem sltmuldivwd

Description: Surreal less-than relationship between division and multiplication. Weak version. (Contributed by Scott Fenton, 14-Mar-2025)

Ref Expression
Hypotheses sltdivmulwd.1
|- ( ph -> A e. No )
sltdivmulwd.2
|- ( ph -> B e. No )
sltdivmulwd.3
|- ( ph -> C e. No )
sltdivmulwd.4
|- ( ph -> 0s 
sltdivmulwd.5
|- ( ph -> E. x e. No ( C x.s x ) = 1s )
Assertion sltmuldivwd
|- ( ph -> ( ( A x.s C )  A 

Proof

Step Hyp Ref Expression
1 sltdivmulwd.1
 |-  ( ph -> A e. No )
2 sltdivmulwd.2
 |-  ( ph -> B e. No )
3 sltdivmulwd.3
 |-  ( ph -> C e. No )
4 sltdivmulwd.4
 |-  ( ph -> 0s 
5 sltdivmulwd.5
 |-  ( ph -> E. x e. No ( C x.s x ) = 1s )
6 4 sgt0ne0d
 |-  ( ph -> C =/= 0s )
7 2 3 6 5 divsclwd
 |-  ( ph -> ( B /su C ) e. No )
8 1 7 3 4 sltmul1d
 |-  ( ph -> ( A  ( A x.s C ) 
9 2 3 6 5 divscan1wd
 |-  ( ph -> ( ( B /su C ) x.s C ) = B )
10 9 breq2d
 |-  ( ph -> ( ( A x.s C )  ( A x.s C ) 
11 8 10 bitr2d
 |-  ( ph -> ( ( A x.s C )  A