Description: Surreal less-than relationship between division and multiplication. Weak version. (Contributed by Scott Fenton, 14-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sltdivmulwd.1 | |- ( ph -> A e. No ) |
|
sltdivmulwd.2 | |- ( ph -> B e. No ) |
||
sltdivmulwd.3 | |- ( ph -> C e. No ) |
||
sltdivmulwd.4 | |- ( ph -> 0s |
||
sltdivmulwd.5 | |- ( ph -> E. x e. No ( C x.s x ) = 1s ) |
||
Assertion | sltmuldivwd | |- ( ph -> ( ( A x.s C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sltdivmulwd.1 | |- ( ph -> A e. No ) |
|
2 | sltdivmulwd.2 | |- ( ph -> B e. No ) |
|
3 | sltdivmulwd.3 | |- ( ph -> C e. No ) |
|
4 | sltdivmulwd.4 | |- ( ph -> 0s |
|
5 | sltdivmulwd.5 | |- ( ph -> E. x e. No ( C x.s x ) = 1s ) |
|
6 | 4 | sgt0ne0d | |- ( ph -> C =/= 0s ) |
7 | 2 3 6 5 | divsclwd | |- ( ph -> ( B /su C ) e. No ) |
8 | 1 7 3 4 | sltmul1d | |- ( ph -> ( A |
9 | 2 3 6 5 | divscan1wd | |- ( ph -> ( ( B /su C ) x.s C ) = B ) |
10 | 9 | breq2d | |- ( ph -> ( ( A x.s C ) |
11 | 8 10 | bitr2d | |- ( ph -> ( ( A x.s C ) |