| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sltdivmulwd.1 |  |-  ( ph -> A e. No ) | 
						
							| 2 |  | sltdivmulwd.2 |  |-  ( ph -> B e. No ) | 
						
							| 3 |  | sltdivmulwd.3 |  |-  ( ph -> C e. No ) | 
						
							| 4 |  | sltdivmulwd.4 |  |-  ( ph -> 0s  | 
						
							| 5 |  | sltdivmulwd.5 |  |-  ( ph -> E. x e. No ( C x.s x ) = 1s ) | 
						
							| 6 | 4 | sgt0ne0d |  |-  ( ph -> C =/= 0s ) | 
						
							| 7 | 2 3 6 5 | divsclwd |  |-  ( ph -> ( B /su C ) e. No ) | 
						
							| 8 | 1 7 3 4 | sltmul1d |  |-  ( ph -> ( A  ( A x.s C )  | 
						
							| 9 | 2 3 6 5 | divscan1wd |  |-  ( ph -> ( ( B /su C ) x.s C ) = B ) | 
						
							| 10 | 9 | breq2d |  |-  ( ph -> ( ( A x.s C )  ( A x.s C )  | 
						
							| 11 | 8 10 | bitr2d |  |-  ( ph -> ( ( A x.s C )  A  |