Description: Surreal less-than relationship between division and multiplication. Weak version. (Contributed by Scott Fenton, 14-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sltdivmulwd.1 | |- ( ph -> A e. No ) | |
| sltdivmulwd.2 | |- ( ph -> B e. No ) | ||
| sltdivmulwd.3 | |- ( ph -> C e. No ) | ||
| sltdivmulwd.4 | |- ( ph -> 0s | ||
| sltdivmulwd.5 | |- ( ph -> E. x e. No ( C x.s x ) = 1s ) | ||
| Assertion | sltmuldiv2wd | |- ( ph -> ( ( C x.s A ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sltdivmulwd.1 | |- ( ph -> A e. No ) | |
| 2 | sltdivmulwd.2 | |- ( ph -> B e. No ) | |
| 3 | sltdivmulwd.3 | |- ( ph -> C e. No ) | |
| 4 | sltdivmulwd.4 | |- ( ph -> 0s | |
| 5 | sltdivmulwd.5 | |- ( ph -> E. x e. No ( C x.s x ) = 1s ) | |
| 6 | 1 3 | mulscomd | |- ( ph -> ( A x.s C ) = ( C x.s A ) ) | 
| 7 | 6 | breq1d | |- ( ph -> ( ( A x.s C ) | 
| 8 | 1 2 3 4 5 | sltmuldivwd | |- ( ph -> ( ( A x.s C ) | 
| 9 | 7 8 | bitr3d | |- ( ph -> ( ( C x.s A ) |