Metamath Proof Explorer


Theorem sltmuldiv2wd

Description: Surreal less-than relationship between division and multiplication. Weak version. (Contributed by Scott Fenton, 14-Mar-2025)

Ref Expression
Hypotheses sltdivmulwd.1
|- ( ph -> A e. No )
sltdivmulwd.2
|- ( ph -> B e. No )
sltdivmulwd.3
|- ( ph -> C e. No )
sltdivmulwd.4
|- ( ph -> 0s 
sltdivmulwd.5
|- ( ph -> E. x e. No ( C x.s x ) = 1s )
Assertion sltmuldiv2wd
|- ( ph -> ( ( C x.s A )  A 

Proof

Step Hyp Ref Expression
1 sltdivmulwd.1
 |-  ( ph -> A e. No )
2 sltdivmulwd.2
 |-  ( ph -> B e. No )
3 sltdivmulwd.3
 |-  ( ph -> C e. No )
4 sltdivmulwd.4
 |-  ( ph -> 0s 
5 sltdivmulwd.5
 |-  ( ph -> E. x e. No ( C x.s x ) = 1s )
6 1 3 mulscomd
 |-  ( ph -> ( A x.s C ) = ( C x.s A ) )
7 6 breq1d
 |-  ( ph -> ( ( A x.s C )  ( C x.s A ) 
8 1 2 3 4 5 sltmuldivwd
 |-  ( ph -> ( ( A x.s C )  A 
9 7 8 bitr3d
 |-  ( ph -> ( ( C x.s A )  A