Metamath Proof Explorer


Theorem sltmul2d

Description: Multiplication of both sides of surreal less-than by a positive number. (Contributed by Scott Fenton, 10-Mar-2025)

Ref Expression
Hypotheses sltmul12d.1
|- ( ph -> A e. No )
sltmul12d.2
|- ( ph -> B e. No )
sltmul12d.3
|- ( ph -> C e. No )
sltmul12d.4
|- ( ph -> 0s 
Assertion sltmul2d
|- ( ph -> ( A  ( C x.s A ) 

Proof

Step Hyp Ref Expression
1 sltmul12d.1
 |-  ( ph -> A e. No )
2 sltmul12d.2
 |-  ( ph -> B e. No )
3 sltmul12d.3
 |-  ( ph -> C e. No )
4 sltmul12d.4
 |-  ( ph -> 0s 
5 sltmul2
 |-  ( ( ( C e. No /\ 0s  ( A  ( C x.s A ) 
6 3 4 1 2 5 syl211anc
 |-  ( ph -> ( A  ( C x.s A )