Metamath Proof Explorer
		
		
		
		Description:  Multiplication of both sides of surreal less-than by a positive number.
       (Contributed by Scott Fenton, 10-Mar-2025)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | sltmul12d.1 | ⊢ ( 𝜑  →  𝐴  ∈   No  ) | 
					
						|  |  | sltmul12d.2 | ⊢ ( 𝜑  →  𝐵  ∈   No  ) | 
					
						|  |  | sltmul12d.3 | ⊢ ( 𝜑  →  𝐶  ∈   No  ) | 
					
						|  |  | sltmul12d.4 | ⊢ ( 𝜑  →   0s   <s  𝐶 ) | 
				
					|  | Assertion | sltmul2d | ⊢  ( 𝜑  →  ( 𝐴  <s  𝐵  ↔  ( 𝐶  ·s  𝐴 )  <s  ( 𝐶  ·s  𝐵 ) ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sltmul12d.1 | ⊢ ( 𝜑  →  𝐴  ∈   No  ) | 
						
							| 2 |  | sltmul12d.2 | ⊢ ( 𝜑  →  𝐵  ∈   No  ) | 
						
							| 3 |  | sltmul12d.3 | ⊢ ( 𝜑  →  𝐶  ∈   No  ) | 
						
							| 4 |  | sltmul12d.4 | ⊢ ( 𝜑  →   0s   <s  𝐶 ) | 
						
							| 5 |  | sltmul2 | ⊢ ( ( ( 𝐶  ∈   No   ∧   0s   <s  𝐶 )  ∧  𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( 𝐴  <s  𝐵  ↔  ( 𝐶  ·s  𝐴 )  <s  ( 𝐶  ·s  𝐵 ) ) ) | 
						
							| 6 | 3 4 1 2 5 | syl211anc | ⊢ ( 𝜑  →  ( 𝐴  <s  𝐵  ↔  ( 𝐶  ·s  𝐴 )  <s  ( 𝐶  ·s  𝐵 ) ) ) |