Description: Multiplication of both sides of surreal less-than by a positive number. (Contributed by Scott Fenton, 10-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sltmul12d.1 | ⊢ ( 𝜑 → 𝐴 ∈ No ) | |
| sltmul12d.2 | ⊢ ( 𝜑 → 𝐵 ∈ No ) | ||
| sltmul12d.3 | ⊢ ( 𝜑 → 𝐶 ∈ No ) | ||
| sltmul12d.4 | ⊢ ( 𝜑 → 0s <s 𝐶 ) | ||
| Assertion | sltmul1d | ⊢ ( 𝜑 → ( 𝐴 <s 𝐵 ↔ ( 𝐴 ·s 𝐶 ) <s ( 𝐵 ·s 𝐶 ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sltmul12d.1 | ⊢ ( 𝜑 → 𝐴 ∈ No ) | |
| 2 | sltmul12d.2 | ⊢ ( 𝜑 → 𝐵 ∈ No ) | |
| 3 | sltmul12d.3 | ⊢ ( 𝜑 → 𝐶 ∈ No ) | |
| 4 | sltmul12d.4 | ⊢ ( 𝜑 → 0s <s 𝐶 ) | |
| 5 | 1 2 3 4 | sltmul2d | ⊢ ( 𝜑 → ( 𝐴 <s 𝐵 ↔ ( 𝐶 ·s 𝐴 ) <s ( 𝐶 ·s 𝐵 ) ) ) | 
| 6 | 1 3 | mulscomd | ⊢ ( 𝜑 → ( 𝐴 ·s 𝐶 ) = ( 𝐶 ·s 𝐴 ) ) | 
| 7 | 2 3 | mulscomd | ⊢ ( 𝜑 → ( 𝐵 ·s 𝐶 ) = ( 𝐶 ·s 𝐵 ) ) | 
| 8 | 6 7 | breq12d | ⊢ ( 𝜑 → ( ( 𝐴 ·s 𝐶 ) <s ( 𝐵 ·s 𝐶 ) ↔ ( 𝐶 ·s 𝐴 ) <s ( 𝐶 ·s 𝐵 ) ) ) | 
| 9 | 5 8 | bitr4d | ⊢ ( 𝜑 → ( 𝐴 <s 𝐵 ↔ ( 𝐴 ·s 𝐶 ) <s ( 𝐵 ·s 𝐶 ) ) ) |