| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sltmul12d.1 | ⊢ ( 𝜑  →  𝐴  ∈   No  ) | 
						
							| 2 |  | sltmul12d.2 | ⊢ ( 𝜑  →  𝐵  ∈   No  ) | 
						
							| 3 |  | sltmul12d.3 | ⊢ ( 𝜑  →  𝐶  ∈   No  ) | 
						
							| 4 |  | sltmul12d.4 | ⊢ ( 𝜑  →   0s   <s  𝐶 ) | 
						
							| 5 | 2 1 3 4 | sltmul2d | ⊢ ( 𝜑  →  ( 𝐵  <s  𝐴  ↔  ( 𝐶  ·s  𝐵 )  <s  ( 𝐶  ·s  𝐴 ) ) ) | 
						
							| 6 | 5 | notbid | ⊢ ( 𝜑  →  ( ¬  𝐵  <s  𝐴  ↔  ¬  ( 𝐶  ·s  𝐵 )  <s  ( 𝐶  ·s  𝐴 ) ) ) | 
						
							| 7 |  | slenlt | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( 𝐴  ≤s  𝐵  ↔  ¬  𝐵  <s  𝐴 ) ) | 
						
							| 8 | 1 2 7 | syl2anc | ⊢ ( 𝜑  →  ( 𝐴  ≤s  𝐵  ↔  ¬  𝐵  <s  𝐴 ) ) | 
						
							| 9 | 3 1 | mulscld | ⊢ ( 𝜑  →  ( 𝐶  ·s  𝐴 )  ∈   No  ) | 
						
							| 10 | 3 2 | mulscld | ⊢ ( 𝜑  →  ( 𝐶  ·s  𝐵 )  ∈   No  ) | 
						
							| 11 |  | slenlt | ⊢ ( ( ( 𝐶  ·s  𝐴 )  ∈   No   ∧  ( 𝐶  ·s  𝐵 )  ∈   No  )  →  ( ( 𝐶  ·s  𝐴 )  ≤s  ( 𝐶  ·s  𝐵 )  ↔  ¬  ( 𝐶  ·s  𝐵 )  <s  ( 𝐶  ·s  𝐴 ) ) ) | 
						
							| 12 | 9 10 11 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐶  ·s  𝐴 )  ≤s  ( 𝐶  ·s  𝐵 )  ↔  ¬  ( 𝐶  ·s  𝐵 )  <s  ( 𝐶  ·s  𝐴 ) ) ) | 
						
							| 13 | 6 8 12 | 3bitr4d | ⊢ ( 𝜑  →  ( 𝐴  ≤s  𝐵  ↔  ( 𝐶  ·s  𝐴 )  ≤s  ( 𝐶  ·s  𝐵 ) ) ) |