| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sltmul12d.1 |  |-  ( ph -> A e. No ) | 
						
							| 2 |  | sltmul12d.2 |  |-  ( ph -> B e. No ) | 
						
							| 3 |  | sltmul12d.3 |  |-  ( ph -> C e. No ) | 
						
							| 4 |  | sltmul12d.4 |  |-  ( ph -> 0s  | 
						
							| 5 | 2 1 3 4 | sltmul2d |  |-  ( ph -> ( B  ( C x.s B )  | 
						
							| 6 | 5 | notbid |  |-  ( ph -> ( -. B  -. ( C x.s B )  | 
						
							| 7 |  | slenlt |  |-  ( ( A e. No /\ B e. No ) -> ( A <_s B <-> -. B  | 
						
							| 8 | 1 2 7 | syl2anc |  |-  ( ph -> ( A <_s B <-> -. B  | 
						
							| 9 | 3 1 | mulscld |  |-  ( ph -> ( C x.s A ) e. No ) | 
						
							| 10 | 3 2 | mulscld |  |-  ( ph -> ( C x.s B ) e. No ) | 
						
							| 11 |  | slenlt |  |-  ( ( ( C x.s A ) e. No /\ ( C x.s B ) e. No ) -> ( ( C x.s A ) <_s ( C x.s B ) <-> -. ( C x.s B )  | 
						
							| 12 | 9 10 11 | syl2anc |  |-  ( ph -> ( ( C x.s A ) <_s ( C x.s B ) <-> -. ( C x.s B )  | 
						
							| 13 | 6 8 12 | 3bitr4d |  |-  ( ph -> ( A <_s B <-> ( C x.s A ) <_s ( C x.s B ) ) ) |