Description: A Sylow P -subgroup is a subgroup. (Contributed by Mario Carneiro, 16-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | slwsubg | |- ( H e. ( P pSyl G ) -> H e. ( SubGrp ` G ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | isslw | |- ( H e. ( P pSyl G ) <-> ( P e. Prime /\ H e. ( SubGrp ` G ) /\ A. k e. ( SubGrp ` G ) ( ( H C_ k /\ P pGrp ( G |`s k ) ) <-> H = k ) ) ) | |
| 2 | 1 | simp2bi | |- ( H e. ( P pSyl G ) -> H e. ( SubGrp ` G ) ) |