| Step | Hyp | Ref | Expression | 
						
							| 1 |  | slwispgp.1 |  |-  S = ( G |`s K ) | 
						
							| 2 |  | isslw |  |-  ( H e. ( P pSyl G ) <-> ( P e. Prime /\ H e. ( SubGrp ` G ) /\ A. k e. ( SubGrp ` G ) ( ( H C_ k /\ P pGrp ( G |`s k ) ) <-> H = k ) ) ) | 
						
							| 3 | 2 | simp3bi |  |-  ( H e. ( P pSyl G ) -> A. k e. ( SubGrp ` G ) ( ( H C_ k /\ P pGrp ( G |`s k ) ) <-> H = k ) ) | 
						
							| 4 |  | sseq2 |  |-  ( k = K -> ( H C_ k <-> H C_ K ) ) | 
						
							| 5 |  | oveq2 |  |-  ( k = K -> ( G |`s k ) = ( G |`s K ) ) | 
						
							| 6 | 5 1 | eqtr4di |  |-  ( k = K -> ( G |`s k ) = S ) | 
						
							| 7 | 6 | breq2d |  |-  ( k = K -> ( P pGrp ( G |`s k ) <-> P pGrp S ) ) | 
						
							| 8 | 4 7 | anbi12d |  |-  ( k = K -> ( ( H C_ k /\ P pGrp ( G |`s k ) ) <-> ( H C_ K /\ P pGrp S ) ) ) | 
						
							| 9 |  | eqeq2 |  |-  ( k = K -> ( H = k <-> H = K ) ) | 
						
							| 10 | 8 9 | bibi12d |  |-  ( k = K -> ( ( ( H C_ k /\ P pGrp ( G |`s k ) ) <-> H = k ) <-> ( ( H C_ K /\ P pGrp S ) <-> H = K ) ) ) | 
						
							| 11 | 10 | rspccva |  |-  ( ( A. k e. ( SubGrp ` G ) ( ( H C_ k /\ P pGrp ( G |`s k ) ) <-> H = k ) /\ K e. ( SubGrp ` G ) ) -> ( ( H C_ K /\ P pGrp S ) <-> H = K ) ) | 
						
							| 12 | 3 11 | sylan |  |-  ( ( H e. ( P pSyl G ) /\ K e. ( SubGrp ` G ) ) -> ( ( H C_ K /\ P pGrp S ) <-> H = K ) ) |