| Step | Hyp | Ref | Expression | 
						
							| 1 |  | slwispgp.1 |  |-  S = ( G |`s K ) | 
						
							| 2 |  | simp3 |  |-  ( ( H e. ( P pSyl G ) /\ K e. ( SubGrp ` G ) /\ H C. K ) -> H C. K ) | 
						
							| 3 | 2 | pssned |  |-  ( ( H e. ( P pSyl G ) /\ K e. ( SubGrp ` G ) /\ H C. K ) -> H =/= K ) | 
						
							| 4 | 2 | pssssd |  |-  ( ( H e. ( P pSyl G ) /\ K e. ( SubGrp ` G ) /\ H C. K ) -> H C_ K ) | 
						
							| 5 | 4 | biantrurd |  |-  ( ( H e. ( P pSyl G ) /\ K e. ( SubGrp ` G ) /\ H C. K ) -> ( P pGrp S <-> ( H C_ K /\ P pGrp S ) ) ) | 
						
							| 6 | 1 | slwispgp |  |-  ( ( H e. ( P pSyl G ) /\ K e. ( SubGrp ` G ) ) -> ( ( H C_ K /\ P pGrp S ) <-> H = K ) ) | 
						
							| 7 | 6 | 3adant3 |  |-  ( ( H e. ( P pSyl G ) /\ K e. ( SubGrp ` G ) /\ H C. K ) -> ( ( H C_ K /\ P pGrp S ) <-> H = K ) ) | 
						
							| 8 | 5 7 | bitrd |  |-  ( ( H e. ( P pSyl G ) /\ K e. ( SubGrp ` G ) /\ H C. K ) -> ( P pGrp S <-> H = K ) ) | 
						
							| 9 | 8 | necon3bbid |  |-  ( ( H e. ( P pSyl G ) /\ K e. ( SubGrp ` G ) /\ H C. K ) -> ( -. P pGrp S <-> H =/= K ) ) | 
						
							| 10 | 3 9 | mpbird |  |-  ( ( H e. ( P pSyl G ) /\ K e. ( SubGrp ` G ) /\ H C. K ) -> -. P pGrp S ) |