| Step | Hyp | Ref | Expression | 
						
							| 1 |  | slwispgp.1 | ⊢ 𝑆  =  ( 𝐺  ↾s  𝐾 ) | 
						
							| 2 |  | simp3 | ⊢ ( ( 𝐻  ∈  ( 𝑃  pSyl  𝐺 )  ∧  𝐾  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐻  ⊊  𝐾 )  →  𝐻  ⊊  𝐾 ) | 
						
							| 3 | 2 | pssned | ⊢ ( ( 𝐻  ∈  ( 𝑃  pSyl  𝐺 )  ∧  𝐾  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐻  ⊊  𝐾 )  →  𝐻  ≠  𝐾 ) | 
						
							| 4 | 2 | pssssd | ⊢ ( ( 𝐻  ∈  ( 𝑃  pSyl  𝐺 )  ∧  𝐾  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐻  ⊊  𝐾 )  →  𝐻  ⊆  𝐾 ) | 
						
							| 5 | 4 | biantrurd | ⊢ ( ( 𝐻  ∈  ( 𝑃  pSyl  𝐺 )  ∧  𝐾  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐻  ⊊  𝐾 )  →  ( 𝑃  pGrp  𝑆  ↔  ( 𝐻  ⊆  𝐾  ∧  𝑃  pGrp  𝑆 ) ) ) | 
						
							| 6 | 1 | slwispgp | ⊢ ( ( 𝐻  ∈  ( 𝑃  pSyl  𝐺 )  ∧  𝐾  ∈  ( SubGrp ‘ 𝐺 ) )  →  ( ( 𝐻  ⊆  𝐾  ∧  𝑃  pGrp  𝑆 )  ↔  𝐻  =  𝐾 ) ) | 
						
							| 7 | 6 | 3adant3 | ⊢ ( ( 𝐻  ∈  ( 𝑃  pSyl  𝐺 )  ∧  𝐾  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐻  ⊊  𝐾 )  →  ( ( 𝐻  ⊆  𝐾  ∧  𝑃  pGrp  𝑆 )  ↔  𝐻  =  𝐾 ) ) | 
						
							| 8 | 5 7 | bitrd | ⊢ ( ( 𝐻  ∈  ( 𝑃  pSyl  𝐺 )  ∧  𝐾  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐻  ⊊  𝐾 )  →  ( 𝑃  pGrp  𝑆  ↔  𝐻  =  𝐾 ) ) | 
						
							| 9 | 8 | necon3bbid | ⊢ ( ( 𝐻  ∈  ( 𝑃  pSyl  𝐺 )  ∧  𝐾  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐻  ⊊  𝐾 )  →  ( ¬  𝑃  pGrp  𝑆  ↔  𝐻  ≠  𝐾 ) ) | 
						
							| 10 | 3 9 | mpbird | ⊢ ( ( 𝐻  ∈  ( 𝑃  pSyl  𝐺 )  ∧  𝐾  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐻  ⊊  𝐾 )  →  ¬  𝑃  pGrp  𝑆 ) |