Description: A Sylow P -subgroup is a P -group. (Contributed by Mario Carneiro, 16-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | slwpgp.1 | ⊢ 𝑆 = ( 𝐺 ↾s 𝐻 ) | |
| Assertion | slwpgp | ⊢ ( 𝐻 ∈ ( 𝑃 pSyl 𝐺 ) → 𝑃 pGrp 𝑆 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | slwpgp.1 | ⊢ 𝑆 = ( 𝐺 ↾s 𝐻 ) | |
| 2 | eqid | ⊢ 𝐻 = 𝐻 | |
| 3 | slwsubg | ⊢ ( 𝐻 ∈ ( 𝑃 pSyl 𝐺 ) → 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 4 | 1 | slwispgp | ⊢ ( ( 𝐻 ∈ ( 𝑃 pSyl 𝐺 ) ∧ 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( 𝐻 ⊆ 𝐻 ∧ 𝑃 pGrp 𝑆 ) ↔ 𝐻 = 𝐻 ) ) | 
| 5 | 3 4 | mpdan | ⊢ ( 𝐻 ∈ ( 𝑃 pSyl 𝐺 ) → ( ( 𝐻 ⊆ 𝐻 ∧ 𝑃 pGrp 𝑆 ) ↔ 𝐻 = 𝐻 ) ) | 
| 6 | 2 5 | mpbiri | ⊢ ( 𝐻 ∈ ( 𝑃 pSyl 𝐺 ) → ( 𝐻 ⊆ 𝐻 ∧ 𝑃 pGrp 𝑆 ) ) | 
| 7 | 6 | simprd | ⊢ ( 𝐻 ∈ ( 𝑃 pSyl 𝐺 ) → 𝑃 pGrp 𝑆 ) |