| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pgpssslw.1 | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | pgpssslw.2 | ⊢ 𝑆  =  ( 𝐺  ↾s  𝐻 ) | 
						
							| 3 |  | pgpssslw.3 | ⊢ 𝐹  =  ( 𝑥  ∈  { 𝑦  ∈  ( SubGrp ‘ 𝐺 )  ∣  ( 𝑃  pGrp  ( 𝐺  ↾s  𝑦 )  ∧  𝐻  ⊆  𝑦 ) }  ↦  ( ♯ ‘ 𝑥 ) ) | 
						
							| 4 |  | simp2 | ⊢ ( ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑋  ∈  Fin  ∧  𝑃  pGrp  𝑆 )  →  𝑋  ∈  Fin ) | 
						
							| 5 |  | elrabi | ⊢ ( 𝑥  ∈  { 𝑦  ∈  ( SubGrp ‘ 𝐺 )  ∣  ( 𝑃  pGrp  ( 𝐺  ↾s  𝑦 )  ∧  𝐻  ⊆  𝑦 ) }  →  𝑥  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 6 | 1 | subgss | ⊢ ( 𝑥  ∈  ( SubGrp ‘ 𝐺 )  →  𝑥  ⊆  𝑋 ) | 
						
							| 7 | 5 6 | syl | ⊢ ( 𝑥  ∈  { 𝑦  ∈  ( SubGrp ‘ 𝐺 )  ∣  ( 𝑃  pGrp  ( 𝐺  ↾s  𝑦 )  ∧  𝐻  ⊆  𝑦 ) }  →  𝑥  ⊆  𝑋 ) | 
						
							| 8 |  | ssfi | ⊢ ( ( 𝑋  ∈  Fin  ∧  𝑥  ⊆  𝑋 )  →  𝑥  ∈  Fin ) | 
						
							| 9 | 4 7 8 | syl2an | ⊢ ( ( ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑋  ∈  Fin  ∧  𝑃  pGrp  𝑆 )  ∧  𝑥  ∈  { 𝑦  ∈  ( SubGrp ‘ 𝐺 )  ∣  ( 𝑃  pGrp  ( 𝐺  ↾s  𝑦 )  ∧  𝐻  ⊆  𝑦 ) } )  →  𝑥  ∈  Fin ) | 
						
							| 10 |  | hashcl | ⊢ ( 𝑥  ∈  Fin  →  ( ♯ ‘ 𝑥 )  ∈  ℕ0 ) | 
						
							| 11 | 9 10 | syl | ⊢ ( ( ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑋  ∈  Fin  ∧  𝑃  pGrp  𝑆 )  ∧  𝑥  ∈  { 𝑦  ∈  ( SubGrp ‘ 𝐺 )  ∣  ( 𝑃  pGrp  ( 𝐺  ↾s  𝑦 )  ∧  𝐻  ⊆  𝑦 ) } )  →  ( ♯ ‘ 𝑥 )  ∈  ℕ0 ) | 
						
							| 12 | 11 | nn0zd | ⊢ ( ( ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑋  ∈  Fin  ∧  𝑃  pGrp  𝑆 )  ∧  𝑥  ∈  { 𝑦  ∈  ( SubGrp ‘ 𝐺 )  ∣  ( 𝑃  pGrp  ( 𝐺  ↾s  𝑦 )  ∧  𝐻  ⊆  𝑦 ) } )  →  ( ♯ ‘ 𝑥 )  ∈  ℤ ) | 
						
							| 13 | 12 3 | fmptd | ⊢ ( ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑋  ∈  Fin  ∧  𝑃  pGrp  𝑆 )  →  𝐹 : { 𝑦  ∈  ( SubGrp ‘ 𝐺 )  ∣  ( 𝑃  pGrp  ( 𝐺  ↾s  𝑦 )  ∧  𝐻  ⊆  𝑦 ) } ⟶ ℤ ) | 
						
							| 14 | 13 | frnd | ⊢ ( ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑋  ∈  Fin  ∧  𝑃  pGrp  𝑆 )  →  ran  𝐹  ⊆  ℤ ) | 
						
							| 15 |  | fvex | ⊢ ( ♯ ‘ 𝑥 )  ∈  V | 
						
							| 16 | 15 3 | fnmpti | ⊢ 𝐹  Fn  { 𝑦  ∈  ( SubGrp ‘ 𝐺 )  ∣  ( 𝑃  pGrp  ( 𝐺  ↾s  𝑦 )  ∧  𝐻  ⊆  𝑦 ) } | 
						
							| 17 |  | eqimss2 | ⊢ ( 𝑦  =  𝐻  →  𝐻  ⊆  𝑦 ) | 
						
							| 18 | 17 | biantrud | ⊢ ( 𝑦  =  𝐻  →  ( 𝑃  pGrp  ( 𝐺  ↾s  𝑦 )  ↔  ( 𝑃  pGrp  ( 𝐺  ↾s  𝑦 )  ∧  𝐻  ⊆  𝑦 ) ) ) | 
						
							| 19 |  | oveq2 | ⊢ ( 𝑦  =  𝐻  →  ( 𝐺  ↾s  𝑦 )  =  ( 𝐺  ↾s  𝐻 ) ) | 
						
							| 20 | 19 2 | eqtr4di | ⊢ ( 𝑦  =  𝐻  →  ( 𝐺  ↾s  𝑦 )  =  𝑆 ) | 
						
							| 21 | 20 | breq2d | ⊢ ( 𝑦  =  𝐻  →  ( 𝑃  pGrp  ( 𝐺  ↾s  𝑦 )  ↔  𝑃  pGrp  𝑆 ) ) | 
						
							| 22 | 18 21 | bitr3d | ⊢ ( 𝑦  =  𝐻  →  ( ( 𝑃  pGrp  ( 𝐺  ↾s  𝑦 )  ∧  𝐻  ⊆  𝑦 )  ↔  𝑃  pGrp  𝑆 ) ) | 
						
							| 23 |  | simp1 | ⊢ ( ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑋  ∈  Fin  ∧  𝑃  pGrp  𝑆 )  →  𝐻  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 24 |  | simp3 | ⊢ ( ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑋  ∈  Fin  ∧  𝑃  pGrp  𝑆 )  →  𝑃  pGrp  𝑆 ) | 
						
							| 25 | 22 23 24 | elrabd | ⊢ ( ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑋  ∈  Fin  ∧  𝑃  pGrp  𝑆 )  →  𝐻  ∈  { 𝑦  ∈  ( SubGrp ‘ 𝐺 )  ∣  ( 𝑃  pGrp  ( 𝐺  ↾s  𝑦 )  ∧  𝐻  ⊆  𝑦 ) } ) | 
						
							| 26 |  | fnfvelrn | ⊢ ( ( 𝐹  Fn  { 𝑦  ∈  ( SubGrp ‘ 𝐺 )  ∣  ( 𝑃  pGrp  ( 𝐺  ↾s  𝑦 )  ∧  𝐻  ⊆  𝑦 ) }  ∧  𝐻  ∈  { 𝑦  ∈  ( SubGrp ‘ 𝐺 )  ∣  ( 𝑃  pGrp  ( 𝐺  ↾s  𝑦 )  ∧  𝐻  ⊆  𝑦 ) } )  →  ( 𝐹 ‘ 𝐻 )  ∈  ran  𝐹 ) | 
						
							| 27 | 16 25 26 | sylancr | ⊢ ( ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑋  ∈  Fin  ∧  𝑃  pGrp  𝑆 )  →  ( 𝐹 ‘ 𝐻 )  ∈  ran  𝐹 ) | 
						
							| 28 | 27 | ne0d | ⊢ ( ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑋  ∈  Fin  ∧  𝑃  pGrp  𝑆 )  →  ran  𝐹  ≠  ∅ ) | 
						
							| 29 |  | hashcl | ⊢ ( 𝑋  ∈  Fin  →  ( ♯ ‘ 𝑋 )  ∈  ℕ0 ) | 
						
							| 30 | 4 29 | syl | ⊢ ( ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑋  ∈  Fin  ∧  𝑃  pGrp  𝑆 )  →  ( ♯ ‘ 𝑋 )  ∈  ℕ0 ) | 
						
							| 31 | 30 | nn0red | ⊢ ( ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑋  ∈  Fin  ∧  𝑃  pGrp  𝑆 )  →  ( ♯ ‘ 𝑋 )  ∈  ℝ ) | 
						
							| 32 |  | fveq2 | ⊢ ( 𝑥  =  𝑚  →  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑚 ) ) | 
						
							| 33 |  | fvex | ⊢ ( ♯ ‘ 𝑚 )  ∈  V | 
						
							| 34 | 32 3 33 | fvmpt | ⊢ ( 𝑚  ∈  { 𝑦  ∈  ( SubGrp ‘ 𝐺 )  ∣  ( 𝑃  pGrp  ( 𝐺  ↾s  𝑦 )  ∧  𝐻  ⊆  𝑦 ) }  →  ( 𝐹 ‘ 𝑚 )  =  ( ♯ ‘ 𝑚 ) ) | 
						
							| 35 | 34 | adantl | ⊢ ( ( ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑋  ∈  Fin  ∧  𝑃  pGrp  𝑆 )  ∧  𝑚  ∈  { 𝑦  ∈  ( SubGrp ‘ 𝐺 )  ∣  ( 𝑃  pGrp  ( 𝐺  ↾s  𝑦 )  ∧  𝐻  ⊆  𝑦 ) } )  →  ( 𝐹 ‘ 𝑚 )  =  ( ♯ ‘ 𝑚 ) ) | 
						
							| 36 |  | oveq2 | ⊢ ( 𝑦  =  𝑚  →  ( 𝐺  ↾s  𝑦 )  =  ( 𝐺  ↾s  𝑚 ) ) | 
						
							| 37 | 36 | breq2d | ⊢ ( 𝑦  =  𝑚  →  ( 𝑃  pGrp  ( 𝐺  ↾s  𝑦 )  ↔  𝑃  pGrp  ( 𝐺  ↾s  𝑚 ) ) ) | 
						
							| 38 |  | sseq2 | ⊢ ( 𝑦  =  𝑚  →  ( 𝐻  ⊆  𝑦  ↔  𝐻  ⊆  𝑚 ) ) | 
						
							| 39 | 37 38 | anbi12d | ⊢ ( 𝑦  =  𝑚  →  ( ( 𝑃  pGrp  ( 𝐺  ↾s  𝑦 )  ∧  𝐻  ⊆  𝑦 )  ↔  ( 𝑃  pGrp  ( 𝐺  ↾s  𝑚 )  ∧  𝐻  ⊆  𝑚 ) ) ) | 
						
							| 40 | 39 | elrab | ⊢ ( 𝑚  ∈  { 𝑦  ∈  ( SubGrp ‘ 𝐺 )  ∣  ( 𝑃  pGrp  ( 𝐺  ↾s  𝑦 )  ∧  𝐻  ⊆  𝑦 ) }  ↔  ( 𝑚  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝑃  pGrp  ( 𝐺  ↾s  𝑚 )  ∧  𝐻  ⊆  𝑚 ) ) ) | 
						
							| 41 | 4 | adantr | ⊢ ( ( ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑋  ∈  Fin  ∧  𝑃  pGrp  𝑆 )  ∧  ( 𝑚  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝑃  pGrp  ( 𝐺  ↾s  𝑚 )  ∧  𝐻  ⊆  𝑚 ) ) )  →  𝑋  ∈  Fin ) | 
						
							| 42 | 1 | subgss | ⊢ ( 𝑚  ∈  ( SubGrp ‘ 𝐺 )  →  𝑚  ⊆  𝑋 ) | 
						
							| 43 | 42 | ad2antrl | ⊢ ( ( ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑋  ∈  Fin  ∧  𝑃  pGrp  𝑆 )  ∧  ( 𝑚  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝑃  pGrp  ( 𝐺  ↾s  𝑚 )  ∧  𝐻  ⊆  𝑚 ) ) )  →  𝑚  ⊆  𝑋 ) | 
						
							| 44 |  | ssdomg | ⊢ ( 𝑋  ∈  Fin  →  ( 𝑚  ⊆  𝑋  →  𝑚  ≼  𝑋 ) ) | 
						
							| 45 | 41 43 44 | sylc | ⊢ ( ( ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑋  ∈  Fin  ∧  𝑃  pGrp  𝑆 )  ∧  ( 𝑚  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝑃  pGrp  ( 𝐺  ↾s  𝑚 )  ∧  𝐻  ⊆  𝑚 ) ) )  →  𝑚  ≼  𝑋 ) | 
						
							| 46 | 41 43 | ssfid | ⊢ ( ( ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑋  ∈  Fin  ∧  𝑃  pGrp  𝑆 )  ∧  ( 𝑚  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝑃  pGrp  ( 𝐺  ↾s  𝑚 )  ∧  𝐻  ⊆  𝑚 ) ) )  →  𝑚  ∈  Fin ) | 
						
							| 47 |  | hashdom | ⊢ ( ( 𝑚  ∈  Fin  ∧  𝑋  ∈  Fin )  →  ( ( ♯ ‘ 𝑚 )  ≤  ( ♯ ‘ 𝑋 )  ↔  𝑚  ≼  𝑋 ) ) | 
						
							| 48 | 46 41 47 | syl2anc | ⊢ ( ( ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑋  ∈  Fin  ∧  𝑃  pGrp  𝑆 )  ∧  ( 𝑚  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝑃  pGrp  ( 𝐺  ↾s  𝑚 )  ∧  𝐻  ⊆  𝑚 ) ) )  →  ( ( ♯ ‘ 𝑚 )  ≤  ( ♯ ‘ 𝑋 )  ↔  𝑚  ≼  𝑋 ) ) | 
						
							| 49 | 45 48 | mpbird | ⊢ ( ( ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑋  ∈  Fin  ∧  𝑃  pGrp  𝑆 )  ∧  ( 𝑚  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝑃  pGrp  ( 𝐺  ↾s  𝑚 )  ∧  𝐻  ⊆  𝑚 ) ) )  →  ( ♯ ‘ 𝑚 )  ≤  ( ♯ ‘ 𝑋 ) ) | 
						
							| 50 | 40 49 | sylan2b | ⊢ ( ( ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑋  ∈  Fin  ∧  𝑃  pGrp  𝑆 )  ∧  𝑚  ∈  { 𝑦  ∈  ( SubGrp ‘ 𝐺 )  ∣  ( 𝑃  pGrp  ( 𝐺  ↾s  𝑦 )  ∧  𝐻  ⊆  𝑦 ) } )  →  ( ♯ ‘ 𝑚 )  ≤  ( ♯ ‘ 𝑋 ) ) | 
						
							| 51 | 35 50 | eqbrtrd | ⊢ ( ( ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑋  ∈  Fin  ∧  𝑃  pGrp  𝑆 )  ∧  𝑚  ∈  { 𝑦  ∈  ( SubGrp ‘ 𝐺 )  ∣  ( 𝑃  pGrp  ( 𝐺  ↾s  𝑦 )  ∧  𝐻  ⊆  𝑦 ) } )  →  ( 𝐹 ‘ 𝑚 )  ≤  ( ♯ ‘ 𝑋 ) ) | 
						
							| 52 | 51 | ralrimiva | ⊢ ( ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑋  ∈  Fin  ∧  𝑃  pGrp  𝑆 )  →  ∀ 𝑚  ∈  { 𝑦  ∈  ( SubGrp ‘ 𝐺 )  ∣  ( 𝑃  pGrp  ( 𝐺  ↾s  𝑦 )  ∧  𝐻  ⊆  𝑦 ) } ( 𝐹 ‘ 𝑚 )  ≤  ( ♯ ‘ 𝑋 ) ) | 
						
							| 53 |  | breq1 | ⊢ ( 𝑤  =  ( 𝐹 ‘ 𝑚 )  →  ( 𝑤  ≤  ( ♯ ‘ 𝑋 )  ↔  ( 𝐹 ‘ 𝑚 )  ≤  ( ♯ ‘ 𝑋 ) ) ) | 
						
							| 54 | 53 | ralrn | ⊢ ( 𝐹  Fn  { 𝑦  ∈  ( SubGrp ‘ 𝐺 )  ∣  ( 𝑃  pGrp  ( 𝐺  ↾s  𝑦 )  ∧  𝐻  ⊆  𝑦 ) }  →  ( ∀ 𝑤  ∈  ran  𝐹 𝑤  ≤  ( ♯ ‘ 𝑋 )  ↔  ∀ 𝑚  ∈  { 𝑦  ∈  ( SubGrp ‘ 𝐺 )  ∣  ( 𝑃  pGrp  ( 𝐺  ↾s  𝑦 )  ∧  𝐻  ⊆  𝑦 ) } ( 𝐹 ‘ 𝑚 )  ≤  ( ♯ ‘ 𝑋 ) ) ) | 
						
							| 55 | 16 54 | ax-mp | ⊢ ( ∀ 𝑤  ∈  ran  𝐹 𝑤  ≤  ( ♯ ‘ 𝑋 )  ↔  ∀ 𝑚  ∈  { 𝑦  ∈  ( SubGrp ‘ 𝐺 )  ∣  ( 𝑃  pGrp  ( 𝐺  ↾s  𝑦 )  ∧  𝐻  ⊆  𝑦 ) } ( 𝐹 ‘ 𝑚 )  ≤  ( ♯ ‘ 𝑋 ) ) | 
						
							| 56 | 52 55 | sylibr | ⊢ ( ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑋  ∈  Fin  ∧  𝑃  pGrp  𝑆 )  →  ∀ 𝑤  ∈  ran  𝐹 𝑤  ≤  ( ♯ ‘ 𝑋 ) ) | 
						
							| 57 |  | brralrspcev | ⊢ ( ( ( ♯ ‘ 𝑋 )  ∈  ℝ  ∧  ∀ 𝑤  ∈  ran  𝐹 𝑤  ≤  ( ♯ ‘ 𝑋 ) )  →  ∃ 𝑧  ∈  ℝ ∀ 𝑤  ∈  ran  𝐹 𝑤  ≤  𝑧 ) | 
						
							| 58 | 31 56 57 | syl2anc | ⊢ ( ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑋  ∈  Fin  ∧  𝑃  pGrp  𝑆 )  →  ∃ 𝑧  ∈  ℝ ∀ 𝑤  ∈  ran  𝐹 𝑤  ≤  𝑧 ) | 
						
							| 59 |  | suprzcl | ⊢ ( ( ran  𝐹  ⊆  ℤ  ∧  ran  𝐹  ≠  ∅  ∧  ∃ 𝑧  ∈  ℝ ∀ 𝑤  ∈  ran  𝐹 𝑤  ≤  𝑧 )  →  sup ( ran  𝐹 ,  ℝ ,   <  )  ∈  ran  𝐹 ) | 
						
							| 60 | 14 28 58 59 | syl3anc | ⊢ ( ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑋  ∈  Fin  ∧  𝑃  pGrp  𝑆 )  →  sup ( ran  𝐹 ,  ℝ ,   <  )  ∈  ran  𝐹 ) | 
						
							| 61 |  | fvelrnb | ⊢ ( 𝐹  Fn  { 𝑦  ∈  ( SubGrp ‘ 𝐺 )  ∣  ( 𝑃  pGrp  ( 𝐺  ↾s  𝑦 )  ∧  𝐻  ⊆  𝑦 ) }  →  ( sup ( ran  𝐹 ,  ℝ ,   <  )  ∈  ran  𝐹  ↔  ∃ 𝑘  ∈  { 𝑦  ∈  ( SubGrp ‘ 𝐺 )  ∣  ( 𝑃  pGrp  ( 𝐺  ↾s  𝑦 )  ∧  𝐻  ⊆  𝑦 ) } ( 𝐹 ‘ 𝑘 )  =  sup ( ran  𝐹 ,  ℝ ,   <  ) ) ) | 
						
							| 62 | 16 61 | ax-mp | ⊢ ( sup ( ran  𝐹 ,  ℝ ,   <  )  ∈  ran  𝐹  ↔  ∃ 𝑘  ∈  { 𝑦  ∈  ( SubGrp ‘ 𝐺 )  ∣  ( 𝑃  pGrp  ( 𝐺  ↾s  𝑦 )  ∧  𝐻  ⊆  𝑦 ) } ( 𝐹 ‘ 𝑘 )  =  sup ( ran  𝐹 ,  ℝ ,   <  ) ) | 
						
							| 63 | 60 62 | sylib | ⊢ ( ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑋  ∈  Fin  ∧  𝑃  pGrp  𝑆 )  →  ∃ 𝑘  ∈  { 𝑦  ∈  ( SubGrp ‘ 𝐺 )  ∣  ( 𝑃  pGrp  ( 𝐺  ↾s  𝑦 )  ∧  𝐻  ⊆  𝑦 ) } ( 𝐹 ‘ 𝑘 )  =  sup ( ran  𝐹 ,  ℝ ,   <  ) ) | 
						
							| 64 |  | oveq2 | ⊢ ( 𝑦  =  𝑘  →  ( 𝐺  ↾s  𝑦 )  =  ( 𝐺  ↾s  𝑘 ) ) | 
						
							| 65 | 64 | breq2d | ⊢ ( 𝑦  =  𝑘  →  ( 𝑃  pGrp  ( 𝐺  ↾s  𝑦 )  ↔  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) ) ) | 
						
							| 66 |  | sseq2 | ⊢ ( 𝑦  =  𝑘  →  ( 𝐻  ⊆  𝑦  ↔  𝐻  ⊆  𝑘 ) ) | 
						
							| 67 | 65 66 | anbi12d | ⊢ ( 𝑦  =  𝑘  →  ( ( 𝑃  pGrp  ( 𝐺  ↾s  𝑦 )  ∧  𝐻  ⊆  𝑦 )  ↔  ( 𝑃  pGrp  ( 𝐺  ↾s  𝑘 )  ∧  𝐻  ⊆  𝑘 ) ) ) | 
						
							| 68 | 67 | rexrab | ⊢ ( ∃ 𝑘  ∈  { 𝑦  ∈  ( SubGrp ‘ 𝐺 )  ∣  ( 𝑃  pGrp  ( 𝐺  ↾s  𝑦 )  ∧  𝐻  ⊆  𝑦 ) } ( 𝐹 ‘ 𝑘 )  =  sup ( ran  𝐹 ,  ℝ ,   <  )  ↔  ∃ 𝑘  ∈  ( SubGrp ‘ 𝐺 ) ( ( 𝑃  pGrp  ( 𝐺  ↾s  𝑘 )  ∧  𝐻  ⊆  𝑘 )  ∧  ( 𝐹 ‘ 𝑘 )  =  sup ( ran  𝐹 ,  ℝ ,   <  ) ) ) | 
						
							| 69 | 63 68 | sylib | ⊢ ( ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑋  ∈  Fin  ∧  𝑃  pGrp  𝑆 )  →  ∃ 𝑘  ∈  ( SubGrp ‘ 𝐺 ) ( ( 𝑃  pGrp  ( 𝐺  ↾s  𝑘 )  ∧  𝐻  ⊆  𝑘 )  ∧  ( 𝐹 ‘ 𝑘 )  =  sup ( ran  𝐹 ,  ℝ ,   <  ) ) ) | 
						
							| 70 |  | simpl3 | ⊢ ( ( ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑋  ∈  Fin  ∧  𝑃  pGrp  𝑆 )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ( 𝑃  pGrp  ( 𝐺  ↾s  𝑘 )  ∧  𝐻  ⊆  𝑘 )  ∧  ( 𝐹 ‘ 𝑘 )  =  sup ( ran  𝐹 ,  ℝ ,   <  ) ) ) )  →  𝑃  pGrp  𝑆 ) | 
						
							| 71 |  | pgpprm | ⊢ ( 𝑃  pGrp  𝑆  →  𝑃  ∈  ℙ ) | 
						
							| 72 | 70 71 | syl | ⊢ ( ( ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑋  ∈  Fin  ∧  𝑃  pGrp  𝑆 )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ( 𝑃  pGrp  ( 𝐺  ↾s  𝑘 )  ∧  𝐻  ⊆  𝑘 )  ∧  ( 𝐹 ‘ 𝑘 )  =  sup ( ran  𝐹 ,  ℝ ,   <  ) ) ) )  →  𝑃  ∈  ℙ ) | 
						
							| 73 |  | simprl | ⊢ ( ( ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑋  ∈  Fin  ∧  𝑃  pGrp  𝑆 )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ( 𝑃  pGrp  ( 𝐺  ↾s  𝑘 )  ∧  𝐻  ⊆  𝑘 )  ∧  ( 𝐹 ‘ 𝑘 )  =  sup ( ran  𝐹 ,  ℝ ,   <  ) ) ) )  →  𝑘  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 74 |  | zssre | ⊢ ℤ  ⊆  ℝ | 
						
							| 75 | 14 74 | sstrdi | ⊢ ( ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑋  ∈  Fin  ∧  𝑃  pGrp  𝑆 )  →  ran  𝐹  ⊆  ℝ ) | 
						
							| 76 | 75 | ad2antrr | ⊢ ( ( ( ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑋  ∈  Fin  ∧  𝑃  pGrp  𝑆 )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ( 𝑃  pGrp  ( 𝐺  ↾s  𝑘 )  ∧  𝐻  ⊆  𝑘 )  ∧  ( 𝐹 ‘ 𝑘 )  =  sup ( ran  𝐹 ,  ℝ ,   <  ) ) ) )  ∧  ( 𝑚  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝑘  ⊆  𝑚  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑚 ) ) ) )  →  ran  𝐹  ⊆  ℝ ) | 
						
							| 77 | 28 | ad2antrr | ⊢ ( ( ( ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑋  ∈  Fin  ∧  𝑃  pGrp  𝑆 )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ( 𝑃  pGrp  ( 𝐺  ↾s  𝑘 )  ∧  𝐻  ⊆  𝑘 )  ∧  ( 𝐹 ‘ 𝑘 )  =  sup ( ran  𝐹 ,  ℝ ,   <  ) ) ) )  ∧  ( 𝑚  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝑘  ⊆  𝑚  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑚 ) ) ) )  →  ran  𝐹  ≠  ∅ ) | 
						
							| 78 | 58 | ad2antrr | ⊢ ( ( ( ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑋  ∈  Fin  ∧  𝑃  pGrp  𝑆 )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ( 𝑃  pGrp  ( 𝐺  ↾s  𝑘 )  ∧  𝐻  ⊆  𝑘 )  ∧  ( 𝐹 ‘ 𝑘 )  =  sup ( ran  𝐹 ,  ℝ ,   <  ) ) ) )  ∧  ( 𝑚  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝑘  ⊆  𝑚  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑚 ) ) ) )  →  ∃ 𝑧  ∈  ℝ ∀ 𝑤  ∈  ran  𝐹 𝑤  ≤  𝑧 ) | 
						
							| 79 |  | simprl | ⊢ ( ( ( ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑋  ∈  Fin  ∧  𝑃  pGrp  𝑆 )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ( 𝑃  pGrp  ( 𝐺  ↾s  𝑘 )  ∧  𝐻  ⊆  𝑘 )  ∧  ( 𝐹 ‘ 𝑘 )  =  sup ( ran  𝐹 ,  ℝ ,   <  ) ) ) )  ∧  ( 𝑚  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝑘  ⊆  𝑚  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑚 ) ) ) )  →  𝑚  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 80 |  | simprrr | ⊢ ( ( ( ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑋  ∈  Fin  ∧  𝑃  pGrp  𝑆 )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ( 𝑃  pGrp  ( 𝐺  ↾s  𝑘 )  ∧  𝐻  ⊆  𝑘 )  ∧  ( 𝐹 ‘ 𝑘 )  =  sup ( ran  𝐹 ,  ℝ ,   <  ) ) ) )  ∧  ( 𝑚  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝑘  ⊆  𝑚  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑚 ) ) ) )  →  𝑃  pGrp  ( 𝐺  ↾s  𝑚 ) ) | 
						
							| 81 |  | simprrl | ⊢ ( ( ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑋  ∈  Fin  ∧  𝑃  pGrp  𝑆 )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ( 𝑃  pGrp  ( 𝐺  ↾s  𝑘 )  ∧  𝐻  ⊆  𝑘 )  ∧  ( 𝐹 ‘ 𝑘 )  =  sup ( ran  𝐹 ,  ℝ ,   <  ) ) ) )  →  ( 𝑃  pGrp  ( 𝐺  ↾s  𝑘 )  ∧  𝐻  ⊆  𝑘 ) ) | 
						
							| 82 | 81 | adantr | ⊢ ( ( ( ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑋  ∈  Fin  ∧  𝑃  pGrp  𝑆 )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ( 𝑃  pGrp  ( 𝐺  ↾s  𝑘 )  ∧  𝐻  ⊆  𝑘 )  ∧  ( 𝐹 ‘ 𝑘 )  =  sup ( ran  𝐹 ,  ℝ ,   <  ) ) ) )  ∧  ( 𝑚  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝑘  ⊆  𝑚  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑚 ) ) ) )  →  ( 𝑃  pGrp  ( 𝐺  ↾s  𝑘 )  ∧  𝐻  ⊆  𝑘 ) ) | 
						
							| 83 | 82 | simprd | ⊢ ( ( ( ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑋  ∈  Fin  ∧  𝑃  pGrp  𝑆 )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ( 𝑃  pGrp  ( 𝐺  ↾s  𝑘 )  ∧  𝐻  ⊆  𝑘 )  ∧  ( 𝐹 ‘ 𝑘 )  =  sup ( ran  𝐹 ,  ℝ ,   <  ) ) ) )  ∧  ( 𝑚  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝑘  ⊆  𝑚  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑚 ) ) ) )  →  𝐻  ⊆  𝑘 ) | 
						
							| 84 |  | simprrl | ⊢ ( ( ( ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑋  ∈  Fin  ∧  𝑃  pGrp  𝑆 )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ( 𝑃  pGrp  ( 𝐺  ↾s  𝑘 )  ∧  𝐻  ⊆  𝑘 )  ∧  ( 𝐹 ‘ 𝑘 )  =  sup ( ran  𝐹 ,  ℝ ,   <  ) ) ) )  ∧  ( 𝑚  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝑘  ⊆  𝑚  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑚 ) ) ) )  →  𝑘  ⊆  𝑚 ) | 
						
							| 85 | 83 84 | sstrd | ⊢ ( ( ( ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑋  ∈  Fin  ∧  𝑃  pGrp  𝑆 )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ( 𝑃  pGrp  ( 𝐺  ↾s  𝑘 )  ∧  𝐻  ⊆  𝑘 )  ∧  ( 𝐹 ‘ 𝑘 )  =  sup ( ran  𝐹 ,  ℝ ,   <  ) ) ) )  ∧  ( 𝑚  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝑘  ⊆  𝑚  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑚 ) ) ) )  →  𝐻  ⊆  𝑚 ) | 
						
							| 86 | 80 85 | jca | ⊢ ( ( ( ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑋  ∈  Fin  ∧  𝑃  pGrp  𝑆 )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ( 𝑃  pGrp  ( 𝐺  ↾s  𝑘 )  ∧  𝐻  ⊆  𝑘 )  ∧  ( 𝐹 ‘ 𝑘 )  =  sup ( ran  𝐹 ,  ℝ ,   <  ) ) ) )  ∧  ( 𝑚  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝑘  ⊆  𝑚  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑚 ) ) ) )  →  ( 𝑃  pGrp  ( 𝐺  ↾s  𝑚 )  ∧  𝐻  ⊆  𝑚 ) ) | 
						
							| 87 | 39 79 86 | elrabd | ⊢ ( ( ( ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑋  ∈  Fin  ∧  𝑃  pGrp  𝑆 )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ( 𝑃  pGrp  ( 𝐺  ↾s  𝑘 )  ∧  𝐻  ⊆  𝑘 )  ∧  ( 𝐹 ‘ 𝑘 )  =  sup ( ran  𝐹 ,  ℝ ,   <  ) ) ) )  ∧  ( 𝑚  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝑘  ⊆  𝑚  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑚 ) ) ) )  →  𝑚  ∈  { 𝑦  ∈  ( SubGrp ‘ 𝐺 )  ∣  ( 𝑃  pGrp  ( 𝐺  ↾s  𝑦 )  ∧  𝐻  ⊆  𝑦 ) } ) | 
						
							| 88 | 87 34 | syl | ⊢ ( ( ( ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑋  ∈  Fin  ∧  𝑃  pGrp  𝑆 )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ( 𝑃  pGrp  ( 𝐺  ↾s  𝑘 )  ∧  𝐻  ⊆  𝑘 )  ∧  ( 𝐹 ‘ 𝑘 )  =  sup ( ran  𝐹 ,  ℝ ,   <  ) ) ) )  ∧  ( 𝑚  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝑘  ⊆  𝑚  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑚 ) ) ) )  →  ( 𝐹 ‘ 𝑚 )  =  ( ♯ ‘ 𝑚 ) ) | 
						
							| 89 |  | fnfvelrn | ⊢ ( ( 𝐹  Fn  { 𝑦  ∈  ( SubGrp ‘ 𝐺 )  ∣  ( 𝑃  pGrp  ( 𝐺  ↾s  𝑦 )  ∧  𝐻  ⊆  𝑦 ) }  ∧  𝑚  ∈  { 𝑦  ∈  ( SubGrp ‘ 𝐺 )  ∣  ( 𝑃  pGrp  ( 𝐺  ↾s  𝑦 )  ∧  𝐻  ⊆  𝑦 ) } )  →  ( 𝐹 ‘ 𝑚 )  ∈  ran  𝐹 ) | 
						
							| 90 | 16 87 89 | sylancr | ⊢ ( ( ( ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑋  ∈  Fin  ∧  𝑃  pGrp  𝑆 )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ( 𝑃  pGrp  ( 𝐺  ↾s  𝑘 )  ∧  𝐻  ⊆  𝑘 )  ∧  ( 𝐹 ‘ 𝑘 )  =  sup ( ran  𝐹 ,  ℝ ,   <  ) ) ) )  ∧  ( 𝑚  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝑘  ⊆  𝑚  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑚 ) ) ) )  →  ( 𝐹 ‘ 𝑚 )  ∈  ran  𝐹 ) | 
						
							| 91 | 88 90 | eqeltrrd | ⊢ ( ( ( ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑋  ∈  Fin  ∧  𝑃  pGrp  𝑆 )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ( 𝑃  pGrp  ( 𝐺  ↾s  𝑘 )  ∧  𝐻  ⊆  𝑘 )  ∧  ( 𝐹 ‘ 𝑘 )  =  sup ( ran  𝐹 ,  ℝ ,   <  ) ) ) )  ∧  ( 𝑚  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝑘  ⊆  𝑚  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑚 ) ) ) )  →  ( ♯ ‘ 𝑚 )  ∈  ran  𝐹 ) | 
						
							| 92 | 76 77 78 91 | suprubd | ⊢ ( ( ( ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑋  ∈  Fin  ∧  𝑃  pGrp  𝑆 )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ( 𝑃  pGrp  ( 𝐺  ↾s  𝑘 )  ∧  𝐻  ⊆  𝑘 )  ∧  ( 𝐹 ‘ 𝑘 )  =  sup ( ran  𝐹 ,  ℝ ,   <  ) ) ) )  ∧  ( 𝑚  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝑘  ⊆  𝑚  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑚 ) ) ) )  →  ( ♯ ‘ 𝑚 )  ≤  sup ( ran  𝐹 ,  ℝ ,   <  ) ) | 
						
							| 93 |  | simprrr | ⊢ ( ( ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑋  ∈  Fin  ∧  𝑃  pGrp  𝑆 )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ( 𝑃  pGrp  ( 𝐺  ↾s  𝑘 )  ∧  𝐻  ⊆  𝑘 )  ∧  ( 𝐹 ‘ 𝑘 )  =  sup ( ran  𝐹 ,  ℝ ,   <  ) ) ) )  →  ( 𝐹 ‘ 𝑘 )  =  sup ( ran  𝐹 ,  ℝ ,   <  ) ) | 
						
							| 94 | 93 | adantr | ⊢ ( ( ( ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑋  ∈  Fin  ∧  𝑃  pGrp  𝑆 )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ( 𝑃  pGrp  ( 𝐺  ↾s  𝑘 )  ∧  𝐻  ⊆  𝑘 )  ∧  ( 𝐹 ‘ 𝑘 )  =  sup ( ran  𝐹 ,  ℝ ,   <  ) ) ) )  ∧  ( 𝑚  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝑘  ⊆  𝑚  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑚 ) ) ) )  →  ( 𝐹 ‘ 𝑘 )  =  sup ( ran  𝐹 ,  ℝ ,   <  ) ) | 
						
							| 95 | 73 | adantr | ⊢ ( ( ( ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑋  ∈  Fin  ∧  𝑃  pGrp  𝑆 )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ( 𝑃  pGrp  ( 𝐺  ↾s  𝑘 )  ∧  𝐻  ⊆  𝑘 )  ∧  ( 𝐹 ‘ 𝑘 )  =  sup ( ran  𝐹 ,  ℝ ,   <  ) ) ) )  ∧  ( 𝑚  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝑘  ⊆  𝑚  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑚 ) ) ) )  →  𝑘  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 96 | 67 95 82 | elrabd | ⊢ ( ( ( ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑋  ∈  Fin  ∧  𝑃  pGrp  𝑆 )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ( 𝑃  pGrp  ( 𝐺  ↾s  𝑘 )  ∧  𝐻  ⊆  𝑘 )  ∧  ( 𝐹 ‘ 𝑘 )  =  sup ( ran  𝐹 ,  ℝ ,   <  ) ) ) )  ∧  ( 𝑚  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝑘  ⊆  𝑚  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑚 ) ) ) )  →  𝑘  ∈  { 𝑦  ∈  ( SubGrp ‘ 𝐺 )  ∣  ( 𝑃  pGrp  ( 𝐺  ↾s  𝑦 )  ∧  𝐻  ⊆  𝑦 ) } ) | 
						
							| 97 |  | fveq2 | ⊢ ( 𝑥  =  𝑘  →  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑘 ) ) | 
						
							| 98 |  | fvex | ⊢ ( ♯ ‘ 𝑘 )  ∈  V | 
						
							| 99 | 97 3 98 | fvmpt | ⊢ ( 𝑘  ∈  { 𝑦  ∈  ( SubGrp ‘ 𝐺 )  ∣  ( 𝑃  pGrp  ( 𝐺  ↾s  𝑦 )  ∧  𝐻  ⊆  𝑦 ) }  →  ( 𝐹 ‘ 𝑘 )  =  ( ♯ ‘ 𝑘 ) ) | 
						
							| 100 | 96 99 | syl | ⊢ ( ( ( ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑋  ∈  Fin  ∧  𝑃  pGrp  𝑆 )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ( 𝑃  pGrp  ( 𝐺  ↾s  𝑘 )  ∧  𝐻  ⊆  𝑘 )  ∧  ( 𝐹 ‘ 𝑘 )  =  sup ( ran  𝐹 ,  ℝ ,   <  ) ) ) )  ∧  ( 𝑚  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝑘  ⊆  𝑚  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑚 ) ) ) )  →  ( 𝐹 ‘ 𝑘 )  =  ( ♯ ‘ 𝑘 ) ) | 
						
							| 101 | 94 100 | eqtr3d | ⊢ ( ( ( ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑋  ∈  Fin  ∧  𝑃  pGrp  𝑆 )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ( 𝑃  pGrp  ( 𝐺  ↾s  𝑘 )  ∧  𝐻  ⊆  𝑘 )  ∧  ( 𝐹 ‘ 𝑘 )  =  sup ( ran  𝐹 ,  ℝ ,   <  ) ) ) )  ∧  ( 𝑚  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝑘  ⊆  𝑚  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑚 ) ) ) )  →  sup ( ran  𝐹 ,  ℝ ,   <  )  =  ( ♯ ‘ 𝑘 ) ) | 
						
							| 102 | 92 101 | breqtrd | ⊢ ( ( ( ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑋  ∈  Fin  ∧  𝑃  pGrp  𝑆 )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ( 𝑃  pGrp  ( 𝐺  ↾s  𝑘 )  ∧  𝐻  ⊆  𝑘 )  ∧  ( 𝐹 ‘ 𝑘 )  =  sup ( ran  𝐹 ,  ℝ ,   <  ) ) ) )  ∧  ( 𝑚  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝑘  ⊆  𝑚  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑚 ) ) ) )  →  ( ♯ ‘ 𝑚 )  ≤  ( ♯ ‘ 𝑘 ) ) | 
						
							| 103 |  | simpll2 | ⊢ ( ( ( ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑋  ∈  Fin  ∧  𝑃  pGrp  𝑆 )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ( 𝑃  pGrp  ( 𝐺  ↾s  𝑘 )  ∧  𝐻  ⊆  𝑘 )  ∧  ( 𝐹 ‘ 𝑘 )  =  sup ( ran  𝐹 ,  ℝ ,   <  ) ) ) )  ∧  ( 𝑚  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝑘  ⊆  𝑚  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑚 ) ) ) )  →  𝑋  ∈  Fin ) | 
						
							| 104 | 42 | ad2antrl | ⊢ ( ( ( ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑋  ∈  Fin  ∧  𝑃  pGrp  𝑆 )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ( 𝑃  pGrp  ( 𝐺  ↾s  𝑘 )  ∧  𝐻  ⊆  𝑘 )  ∧  ( 𝐹 ‘ 𝑘 )  =  sup ( ran  𝐹 ,  ℝ ,   <  ) ) ) )  ∧  ( 𝑚  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝑘  ⊆  𝑚  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑚 ) ) ) )  →  𝑚  ⊆  𝑋 ) | 
						
							| 105 | 103 104 | ssfid | ⊢ ( ( ( ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑋  ∈  Fin  ∧  𝑃  pGrp  𝑆 )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ( 𝑃  pGrp  ( 𝐺  ↾s  𝑘 )  ∧  𝐻  ⊆  𝑘 )  ∧  ( 𝐹 ‘ 𝑘 )  =  sup ( ran  𝐹 ,  ℝ ,   <  ) ) ) )  ∧  ( 𝑚  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝑘  ⊆  𝑚  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑚 ) ) ) )  →  𝑚  ∈  Fin ) | 
						
							| 106 | 105 84 | ssfid | ⊢ ( ( ( ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑋  ∈  Fin  ∧  𝑃  pGrp  𝑆 )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ( 𝑃  pGrp  ( 𝐺  ↾s  𝑘 )  ∧  𝐻  ⊆  𝑘 )  ∧  ( 𝐹 ‘ 𝑘 )  =  sup ( ran  𝐹 ,  ℝ ,   <  ) ) ) )  ∧  ( 𝑚  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝑘  ⊆  𝑚  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑚 ) ) ) )  →  𝑘  ∈  Fin ) | 
						
							| 107 |  | hashcl | ⊢ ( 𝑚  ∈  Fin  →  ( ♯ ‘ 𝑚 )  ∈  ℕ0 ) | 
						
							| 108 |  | hashcl | ⊢ ( 𝑘  ∈  Fin  →  ( ♯ ‘ 𝑘 )  ∈  ℕ0 ) | 
						
							| 109 |  | nn0re | ⊢ ( ( ♯ ‘ 𝑚 )  ∈  ℕ0  →  ( ♯ ‘ 𝑚 )  ∈  ℝ ) | 
						
							| 110 |  | nn0re | ⊢ ( ( ♯ ‘ 𝑘 )  ∈  ℕ0  →  ( ♯ ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 111 |  | lenlt | ⊢ ( ( ( ♯ ‘ 𝑚 )  ∈  ℝ  ∧  ( ♯ ‘ 𝑘 )  ∈  ℝ )  →  ( ( ♯ ‘ 𝑚 )  ≤  ( ♯ ‘ 𝑘 )  ↔  ¬  ( ♯ ‘ 𝑘 )  <  ( ♯ ‘ 𝑚 ) ) ) | 
						
							| 112 | 109 110 111 | syl2an | ⊢ ( ( ( ♯ ‘ 𝑚 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝑘 )  ∈  ℕ0 )  →  ( ( ♯ ‘ 𝑚 )  ≤  ( ♯ ‘ 𝑘 )  ↔  ¬  ( ♯ ‘ 𝑘 )  <  ( ♯ ‘ 𝑚 ) ) ) | 
						
							| 113 | 107 108 112 | syl2an | ⊢ ( ( 𝑚  ∈  Fin  ∧  𝑘  ∈  Fin )  →  ( ( ♯ ‘ 𝑚 )  ≤  ( ♯ ‘ 𝑘 )  ↔  ¬  ( ♯ ‘ 𝑘 )  <  ( ♯ ‘ 𝑚 ) ) ) | 
						
							| 114 | 105 106 113 | syl2anc | ⊢ ( ( ( ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑋  ∈  Fin  ∧  𝑃  pGrp  𝑆 )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ( 𝑃  pGrp  ( 𝐺  ↾s  𝑘 )  ∧  𝐻  ⊆  𝑘 )  ∧  ( 𝐹 ‘ 𝑘 )  =  sup ( ran  𝐹 ,  ℝ ,   <  ) ) ) )  ∧  ( 𝑚  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝑘  ⊆  𝑚  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑚 ) ) ) )  →  ( ( ♯ ‘ 𝑚 )  ≤  ( ♯ ‘ 𝑘 )  ↔  ¬  ( ♯ ‘ 𝑘 )  <  ( ♯ ‘ 𝑚 ) ) ) | 
						
							| 115 | 102 114 | mpbid | ⊢ ( ( ( ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑋  ∈  Fin  ∧  𝑃  pGrp  𝑆 )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ( 𝑃  pGrp  ( 𝐺  ↾s  𝑘 )  ∧  𝐻  ⊆  𝑘 )  ∧  ( 𝐹 ‘ 𝑘 )  =  sup ( ran  𝐹 ,  ℝ ,   <  ) ) ) )  ∧  ( 𝑚  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝑘  ⊆  𝑚  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑚 ) ) ) )  →  ¬  ( ♯ ‘ 𝑘 )  <  ( ♯ ‘ 𝑚 ) ) | 
						
							| 116 |  | php3 | ⊢ ( ( 𝑚  ∈  Fin  ∧  𝑘  ⊊  𝑚 )  →  𝑘  ≺  𝑚 ) | 
						
							| 117 | 116 | ex | ⊢ ( 𝑚  ∈  Fin  →  ( 𝑘  ⊊  𝑚  →  𝑘  ≺  𝑚 ) ) | 
						
							| 118 | 105 117 | syl | ⊢ ( ( ( ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑋  ∈  Fin  ∧  𝑃  pGrp  𝑆 )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ( 𝑃  pGrp  ( 𝐺  ↾s  𝑘 )  ∧  𝐻  ⊆  𝑘 )  ∧  ( 𝐹 ‘ 𝑘 )  =  sup ( ran  𝐹 ,  ℝ ,   <  ) ) ) )  ∧  ( 𝑚  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝑘  ⊆  𝑚  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑚 ) ) ) )  →  ( 𝑘  ⊊  𝑚  →  𝑘  ≺  𝑚 ) ) | 
						
							| 119 |  | hashsdom | ⊢ ( ( 𝑘  ∈  Fin  ∧  𝑚  ∈  Fin )  →  ( ( ♯ ‘ 𝑘 )  <  ( ♯ ‘ 𝑚 )  ↔  𝑘  ≺  𝑚 ) ) | 
						
							| 120 | 106 105 119 | syl2anc | ⊢ ( ( ( ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑋  ∈  Fin  ∧  𝑃  pGrp  𝑆 )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ( 𝑃  pGrp  ( 𝐺  ↾s  𝑘 )  ∧  𝐻  ⊆  𝑘 )  ∧  ( 𝐹 ‘ 𝑘 )  =  sup ( ran  𝐹 ,  ℝ ,   <  ) ) ) )  ∧  ( 𝑚  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝑘  ⊆  𝑚  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑚 ) ) ) )  →  ( ( ♯ ‘ 𝑘 )  <  ( ♯ ‘ 𝑚 )  ↔  𝑘  ≺  𝑚 ) ) | 
						
							| 121 | 118 120 | sylibrd | ⊢ ( ( ( ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑋  ∈  Fin  ∧  𝑃  pGrp  𝑆 )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ( 𝑃  pGrp  ( 𝐺  ↾s  𝑘 )  ∧  𝐻  ⊆  𝑘 )  ∧  ( 𝐹 ‘ 𝑘 )  =  sup ( ran  𝐹 ,  ℝ ,   <  ) ) ) )  ∧  ( 𝑚  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝑘  ⊆  𝑚  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑚 ) ) ) )  →  ( 𝑘  ⊊  𝑚  →  ( ♯ ‘ 𝑘 )  <  ( ♯ ‘ 𝑚 ) ) ) | 
						
							| 122 | 115 121 | mtod | ⊢ ( ( ( ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑋  ∈  Fin  ∧  𝑃  pGrp  𝑆 )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ( 𝑃  pGrp  ( 𝐺  ↾s  𝑘 )  ∧  𝐻  ⊆  𝑘 )  ∧  ( 𝐹 ‘ 𝑘 )  =  sup ( ran  𝐹 ,  ℝ ,   <  ) ) ) )  ∧  ( 𝑚  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝑘  ⊆  𝑚  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑚 ) ) ) )  →  ¬  𝑘  ⊊  𝑚 ) | 
						
							| 123 |  | sspss | ⊢ ( 𝑘  ⊆  𝑚  ↔  ( 𝑘  ⊊  𝑚  ∨  𝑘  =  𝑚 ) ) | 
						
							| 124 | 84 123 | sylib | ⊢ ( ( ( ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑋  ∈  Fin  ∧  𝑃  pGrp  𝑆 )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ( 𝑃  pGrp  ( 𝐺  ↾s  𝑘 )  ∧  𝐻  ⊆  𝑘 )  ∧  ( 𝐹 ‘ 𝑘 )  =  sup ( ran  𝐹 ,  ℝ ,   <  ) ) ) )  ∧  ( 𝑚  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝑘  ⊆  𝑚  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑚 ) ) ) )  →  ( 𝑘  ⊊  𝑚  ∨  𝑘  =  𝑚 ) ) | 
						
							| 125 | 124 | ord | ⊢ ( ( ( ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑋  ∈  Fin  ∧  𝑃  pGrp  𝑆 )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ( 𝑃  pGrp  ( 𝐺  ↾s  𝑘 )  ∧  𝐻  ⊆  𝑘 )  ∧  ( 𝐹 ‘ 𝑘 )  =  sup ( ran  𝐹 ,  ℝ ,   <  ) ) ) )  ∧  ( 𝑚  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝑘  ⊆  𝑚  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑚 ) ) ) )  →  ( ¬  𝑘  ⊊  𝑚  →  𝑘  =  𝑚 ) ) | 
						
							| 126 | 122 125 | mpd | ⊢ ( ( ( ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑋  ∈  Fin  ∧  𝑃  pGrp  𝑆 )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ( 𝑃  pGrp  ( 𝐺  ↾s  𝑘 )  ∧  𝐻  ⊆  𝑘 )  ∧  ( 𝐹 ‘ 𝑘 )  =  sup ( ran  𝐹 ,  ℝ ,   <  ) ) ) )  ∧  ( 𝑚  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝑘  ⊆  𝑚  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑚 ) ) ) )  →  𝑘  =  𝑚 ) | 
						
							| 127 | 126 | expr | ⊢ ( ( ( ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑋  ∈  Fin  ∧  𝑃  pGrp  𝑆 )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ( 𝑃  pGrp  ( 𝐺  ↾s  𝑘 )  ∧  𝐻  ⊆  𝑘 )  ∧  ( 𝐹 ‘ 𝑘 )  =  sup ( ran  𝐹 ,  ℝ ,   <  ) ) ) )  ∧  𝑚  ∈  ( SubGrp ‘ 𝐺 ) )  →  ( ( 𝑘  ⊆  𝑚  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑚 ) )  →  𝑘  =  𝑚 ) ) | 
						
							| 128 | 81 | simpld | ⊢ ( ( ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑋  ∈  Fin  ∧  𝑃  pGrp  𝑆 )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ( 𝑃  pGrp  ( 𝐺  ↾s  𝑘 )  ∧  𝐻  ⊆  𝑘 )  ∧  ( 𝐹 ‘ 𝑘 )  =  sup ( ran  𝐹 ,  ℝ ,   <  ) ) ) )  →  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) ) | 
						
							| 129 | 128 | adantr | ⊢ ( ( ( ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑋  ∈  Fin  ∧  𝑃  pGrp  𝑆 )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ( 𝑃  pGrp  ( 𝐺  ↾s  𝑘 )  ∧  𝐻  ⊆  𝑘 )  ∧  ( 𝐹 ‘ 𝑘 )  =  sup ( ran  𝐹 ,  ℝ ,   <  ) ) ) )  ∧  𝑚  ∈  ( SubGrp ‘ 𝐺 ) )  →  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) ) | 
						
							| 130 |  | oveq2 | ⊢ ( 𝑘  =  𝑚  →  ( 𝐺  ↾s  𝑘 )  =  ( 𝐺  ↾s  𝑚 ) ) | 
						
							| 131 | 130 | breq2d | ⊢ ( 𝑘  =  𝑚  →  ( 𝑃  pGrp  ( 𝐺  ↾s  𝑘 )  ↔  𝑃  pGrp  ( 𝐺  ↾s  𝑚 ) ) ) | 
						
							| 132 |  | eqimss | ⊢ ( 𝑘  =  𝑚  →  𝑘  ⊆  𝑚 ) | 
						
							| 133 | 132 | biantrurd | ⊢ ( 𝑘  =  𝑚  →  ( 𝑃  pGrp  ( 𝐺  ↾s  𝑚 )  ↔  ( 𝑘  ⊆  𝑚  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑚 ) ) ) ) | 
						
							| 134 | 131 133 | bitrd | ⊢ ( 𝑘  =  𝑚  →  ( 𝑃  pGrp  ( 𝐺  ↾s  𝑘 )  ↔  ( 𝑘  ⊆  𝑚  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑚 ) ) ) ) | 
						
							| 135 | 129 134 | syl5ibcom | ⊢ ( ( ( ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑋  ∈  Fin  ∧  𝑃  pGrp  𝑆 )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ( 𝑃  pGrp  ( 𝐺  ↾s  𝑘 )  ∧  𝐻  ⊆  𝑘 )  ∧  ( 𝐹 ‘ 𝑘 )  =  sup ( ran  𝐹 ,  ℝ ,   <  ) ) ) )  ∧  𝑚  ∈  ( SubGrp ‘ 𝐺 ) )  →  ( 𝑘  =  𝑚  →  ( 𝑘  ⊆  𝑚  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑚 ) ) ) ) | 
						
							| 136 | 127 135 | impbid | ⊢ ( ( ( ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑋  ∈  Fin  ∧  𝑃  pGrp  𝑆 )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ( 𝑃  pGrp  ( 𝐺  ↾s  𝑘 )  ∧  𝐻  ⊆  𝑘 )  ∧  ( 𝐹 ‘ 𝑘 )  =  sup ( ran  𝐹 ,  ℝ ,   <  ) ) ) )  ∧  𝑚  ∈  ( SubGrp ‘ 𝐺 ) )  →  ( ( 𝑘  ⊆  𝑚  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑚 ) )  ↔  𝑘  =  𝑚 ) ) | 
						
							| 137 | 136 | ralrimiva | ⊢ ( ( ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑋  ∈  Fin  ∧  𝑃  pGrp  𝑆 )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ( 𝑃  pGrp  ( 𝐺  ↾s  𝑘 )  ∧  𝐻  ⊆  𝑘 )  ∧  ( 𝐹 ‘ 𝑘 )  =  sup ( ran  𝐹 ,  ℝ ,   <  ) ) ) )  →  ∀ 𝑚  ∈  ( SubGrp ‘ 𝐺 ) ( ( 𝑘  ⊆  𝑚  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑚 ) )  ↔  𝑘  =  𝑚 ) ) | 
						
							| 138 |  | isslw | ⊢ ( 𝑘  ∈  ( 𝑃  pSyl  𝐺 )  ↔  ( 𝑃  ∈  ℙ  ∧  𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ∀ 𝑚  ∈  ( SubGrp ‘ 𝐺 ) ( ( 𝑘  ⊆  𝑚  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑚 ) )  ↔  𝑘  =  𝑚 ) ) ) | 
						
							| 139 | 72 73 137 138 | syl3anbrc | ⊢ ( ( ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑋  ∈  Fin  ∧  𝑃  pGrp  𝑆 )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ( 𝑃  pGrp  ( 𝐺  ↾s  𝑘 )  ∧  𝐻  ⊆  𝑘 )  ∧  ( 𝐹 ‘ 𝑘 )  =  sup ( ran  𝐹 ,  ℝ ,   <  ) ) ) )  →  𝑘  ∈  ( 𝑃  pSyl  𝐺 ) ) | 
						
							| 140 | 81 | simprd | ⊢ ( ( ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑋  ∈  Fin  ∧  𝑃  pGrp  𝑆 )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ( 𝑃  pGrp  ( 𝐺  ↾s  𝑘 )  ∧  𝐻  ⊆  𝑘 )  ∧  ( 𝐹 ‘ 𝑘 )  =  sup ( ran  𝐹 ,  ℝ ,   <  ) ) ) )  →  𝐻  ⊆  𝑘 ) | 
						
							| 141 | 69 139 140 | reximssdv | ⊢ ( ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑋  ∈  Fin  ∧  𝑃  pGrp  𝑆 )  →  ∃ 𝑘  ∈  ( 𝑃  pSyl  𝐺 ) 𝐻  ⊆  𝑘 ) |