| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pgpssslw.1 |  |-  X = ( Base ` G ) | 
						
							| 2 |  | pgpssslw.2 |  |-  S = ( G |`s H ) | 
						
							| 3 |  | pgpssslw.3 |  |-  F = ( x e. { y e. ( SubGrp ` G ) | ( P pGrp ( G |`s y ) /\ H C_ y ) } |-> ( # ` x ) ) | 
						
							| 4 |  | simp2 |  |-  ( ( H e. ( SubGrp ` G ) /\ X e. Fin /\ P pGrp S ) -> X e. Fin ) | 
						
							| 5 |  | elrabi |  |-  ( x e. { y e. ( SubGrp ` G ) | ( P pGrp ( G |`s y ) /\ H C_ y ) } -> x e. ( SubGrp ` G ) ) | 
						
							| 6 | 1 | subgss |  |-  ( x e. ( SubGrp ` G ) -> x C_ X ) | 
						
							| 7 | 5 6 | syl |  |-  ( x e. { y e. ( SubGrp ` G ) | ( P pGrp ( G |`s y ) /\ H C_ y ) } -> x C_ X ) | 
						
							| 8 |  | ssfi |  |-  ( ( X e. Fin /\ x C_ X ) -> x e. Fin ) | 
						
							| 9 | 4 7 8 | syl2an |  |-  ( ( ( H e. ( SubGrp ` G ) /\ X e. Fin /\ P pGrp S ) /\ x e. { y e. ( SubGrp ` G ) | ( P pGrp ( G |`s y ) /\ H C_ y ) } ) -> x e. Fin ) | 
						
							| 10 |  | hashcl |  |-  ( x e. Fin -> ( # ` x ) e. NN0 ) | 
						
							| 11 | 9 10 | syl |  |-  ( ( ( H e. ( SubGrp ` G ) /\ X e. Fin /\ P pGrp S ) /\ x e. { y e. ( SubGrp ` G ) | ( P pGrp ( G |`s y ) /\ H C_ y ) } ) -> ( # ` x ) e. NN0 ) | 
						
							| 12 | 11 | nn0zd |  |-  ( ( ( H e. ( SubGrp ` G ) /\ X e. Fin /\ P pGrp S ) /\ x e. { y e. ( SubGrp ` G ) | ( P pGrp ( G |`s y ) /\ H C_ y ) } ) -> ( # ` x ) e. ZZ ) | 
						
							| 13 | 12 3 | fmptd |  |-  ( ( H e. ( SubGrp ` G ) /\ X e. Fin /\ P pGrp S ) -> F : { y e. ( SubGrp ` G ) | ( P pGrp ( G |`s y ) /\ H C_ y ) } --> ZZ ) | 
						
							| 14 | 13 | frnd |  |-  ( ( H e. ( SubGrp ` G ) /\ X e. Fin /\ P pGrp S ) -> ran F C_ ZZ ) | 
						
							| 15 |  | fvex |  |-  ( # ` x ) e. _V | 
						
							| 16 | 15 3 | fnmpti |  |-  F Fn { y e. ( SubGrp ` G ) | ( P pGrp ( G |`s y ) /\ H C_ y ) } | 
						
							| 17 |  | eqimss2 |  |-  ( y = H -> H C_ y ) | 
						
							| 18 | 17 | biantrud |  |-  ( y = H -> ( P pGrp ( G |`s y ) <-> ( P pGrp ( G |`s y ) /\ H C_ y ) ) ) | 
						
							| 19 |  | oveq2 |  |-  ( y = H -> ( G |`s y ) = ( G |`s H ) ) | 
						
							| 20 | 19 2 | eqtr4di |  |-  ( y = H -> ( G |`s y ) = S ) | 
						
							| 21 | 20 | breq2d |  |-  ( y = H -> ( P pGrp ( G |`s y ) <-> P pGrp S ) ) | 
						
							| 22 | 18 21 | bitr3d |  |-  ( y = H -> ( ( P pGrp ( G |`s y ) /\ H C_ y ) <-> P pGrp S ) ) | 
						
							| 23 |  | simp1 |  |-  ( ( H e. ( SubGrp ` G ) /\ X e. Fin /\ P pGrp S ) -> H e. ( SubGrp ` G ) ) | 
						
							| 24 |  | simp3 |  |-  ( ( H e. ( SubGrp ` G ) /\ X e. Fin /\ P pGrp S ) -> P pGrp S ) | 
						
							| 25 | 22 23 24 | elrabd |  |-  ( ( H e. ( SubGrp ` G ) /\ X e. Fin /\ P pGrp S ) -> H e. { y e. ( SubGrp ` G ) | ( P pGrp ( G |`s y ) /\ H C_ y ) } ) | 
						
							| 26 |  | fnfvelrn |  |-  ( ( F Fn { y e. ( SubGrp ` G ) | ( P pGrp ( G |`s y ) /\ H C_ y ) } /\ H e. { y e. ( SubGrp ` G ) | ( P pGrp ( G |`s y ) /\ H C_ y ) } ) -> ( F ` H ) e. ran F ) | 
						
							| 27 | 16 25 26 | sylancr |  |-  ( ( H e. ( SubGrp ` G ) /\ X e. Fin /\ P pGrp S ) -> ( F ` H ) e. ran F ) | 
						
							| 28 | 27 | ne0d |  |-  ( ( H e. ( SubGrp ` G ) /\ X e. Fin /\ P pGrp S ) -> ran F =/= (/) ) | 
						
							| 29 |  | hashcl |  |-  ( X e. Fin -> ( # ` X ) e. NN0 ) | 
						
							| 30 | 4 29 | syl |  |-  ( ( H e. ( SubGrp ` G ) /\ X e. Fin /\ P pGrp S ) -> ( # ` X ) e. NN0 ) | 
						
							| 31 | 30 | nn0red |  |-  ( ( H e. ( SubGrp ` G ) /\ X e. Fin /\ P pGrp S ) -> ( # ` X ) e. RR ) | 
						
							| 32 |  | fveq2 |  |-  ( x = m -> ( # ` x ) = ( # ` m ) ) | 
						
							| 33 |  | fvex |  |-  ( # ` m ) e. _V | 
						
							| 34 | 32 3 33 | fvmpt |  |-  ( m e. { y e. ( SubGrp ` G ) | ( P pGrp ( G |`s y ) /\ H C_ y ) } -> ( F ` m ) = ( # ` m ) ) | 
						
							| 35 | 34 | adantl |  |-  ( ( ( H e. ( SubGrp ` G ) /\ X e. Fin /\ P pGrp S ) /\ m e. { y e. ( SubGrp ` G ) | ( P pGrp ( G |`s y ) /\ H C_ y ) } ) -> ( F ` m ) = ( # ` m ) ) | 
						
							| 36 |  | oveq2 |  |-  ( y = m -> ( G |`s y ) = ( G |`s m ) ) | 
						
							| 37 | 36 | breq2d |  |-  ( y = m -> ( P pGrp ( G |`s y ) <-> P pGrp ( G |`s m ) ) ) | 
						
							| 38 |  | sseq2 |  |-  ( y = m -> ( H C_ y <-> H C_ m ) ) | 
						
							| 39 | 37 38 | anbi12d |  |-  ( y = m -> ( ( P pGrp ( G |`s y ) /\ H C_ y ) <-> ( P pGrp ( G |`s m ) /\ H C_ m ) ) ) | 
						
							| 40 | 39 | elrab |  |-  ( m e. { y e. ( SubGrp ` G ) | ( P pGrp ( G |`s y ) /\ H C_ y ) } <-> ( m e. ( SubGrp ` G ) /\ ( P pGrp ( G |`s m ) /\ H C_ m ) ) ) | 
						
							| 41 | 4 | adantr |  |-  ( ( ( H e. ( SubGrp ` G ) /\ X e. Fin /\ P pGrp S ) /\ ( m e. ( SubGrp ` G ) /\ ( P pGrp ( G |`s m ) /\ H C_ m ) ) ) -> X e. Fin ) | 
						
							| 42 | 1 | subgss |  |-  ( m e. ( SubGrp ` G ) -> m C_ X ) | 
						
							| 43 | 42 | ad2antrl |  |-  ( ( ( H e. ( SubGrp ` G ) /\ X e. Fin /\ P pGrp S ) /\ ( m e. ( SubGrp ` G ) /\ ( P pGrp ( G |`s m ) /\ H C_ m ) ) ) -> m C_ X ) | 
						
							| 44 |  | ssdomg |  |-  ( X e. Fin -> ( m C_ X -> m ~<_ X ) ) | 
						
							| 45 | 41 43 44 | sylc |  |-  ( ( ( H e. ( SubGrp ` G ) /\ X e. Fin /\ P pGrp S ) /\ ( m e. ( SubGrp ` G ) /\ ( P pGrp ( G |`s m ) /\ H C_ m ) ) ) -> m ~<_ X ) | 
						
							| 46 | 41 43 | ssfid |  |-  ( ( ( H e. ( SubGrp ` G ) /\ X e. Fin /\ P pGrp S ) /\ ( m e. ( SubGrp ` G ) /\ ( P pGrp ( G |`s m ) /\ H C_ m ) ) ) -> m e. Fin ) | 
						
							| 47 |  | hashdom |  |-  ( ( m e. Fin /\ X e. Fin ) -> ( ( # ` m ) <_ ( # ` X ) <-> m ~<_ X ) ) | 
						
							| 48 | 46 41 47 | syl2anc |  |-  ( ( ( H e. ( SubGrp ` G ) /\ X e. Fin /\ P pGrp S ) /\ ( m e. ( SubGrp ` G ) /\ ( P pGrp ( G |`s m ) /\ H C_ m ) ) ) -> ( ( # ` m ) <_ ( # ` X ) <-> m ~<_ X ) ) | 
						
							| 49 | 45 48 | mpbird |  |-  ( ( ( H e. ( SubGrp ` G ) /\ X e. Fin /\ P pGrp S ) /\ ( m e. ( SubGrp ` G ) /\ ( P pGrp ( G |`s m ) /\ H C_ m ) ) ) -> ( # ` m ) <_ ( # ` X ) ) | 
						
							| 50 | 40 49 | sylan2b |  |-  ( ( ( H e. ( SubGrp ` G ) /\ X e. Fin /\ P pGrp S ) /\ m e. { y e. ( SubGrp ` G ) | ( P pGrp ( G |`s y ) /\ H C_ y ) } ) -> ( # ` m ) <_ ( # ` X ) ) | 
						
							| 51 | 35 50 | eqbrtrd |  |-  ( ( ( H e. ( SubGrp ` G ) /\ X e. Fin /\ P pGrp S ) /\ m e. { y e. ( SubGrp ` G ) | ( P pGrp ( G |`s y ) /\ H C_ y ) } ) -> ( F ` m ) <_ ( # ` X ) ) | 
						
							| 52 | 51 | ralrimiva |  |-  ( ( H e. ( SubGrp ` G ) /\ X e. Fin /\ P pGrp S ) -> A. m e. { y e. ( SubGrp ` G ) | ( P pGrp ( G |`s y ) /\ H C_ y ) } ( F ` m ) <_ ( # ` X ) ) | 
						
							| 53 |  | breq1 |  |-  ( w = ( F ` m ) -> ( w <_ ( # ` X ) <-> ( F ` m ) <_ ( # ` X ) ) ) | 
						
							| 54 | 53 | ralrn |  |-  ( F Fn { y e. ( SubGrp ` G ) | ( P pGrp ( G |`s y ) /\ H C_ y ) } -> ( A. w e. ran F w <_ ( # ` X ) <-> A. m e. { y e. ( SubGrp ` G ) | ( P pGrp ( G |`s y ) /\ H C_ y ) } ( F ` m ) <_ ( # ` X ) ) ) | 
						
							| 55 | 16 54 | ax-mp |  |-  ( A. w e. ran F w <_ ( # ` X ) <-> A. m e. { y e. ( SubGrp ` G ) | ( P pGrp ( G |`s y ) /\ H C_ y ) } ( F ` m ) <_ ( # ` X ) ) | 
						
							| 56 | 52 55 | sylibr |  |-  ( ( H e. ( SubGrp ` G ) /\ X e. Fin /\ P pGrp S ) -> A. w e. ran F w <_ ( # ` X ) ) | 
						
							| 57 |  | brralrspcev |  |-  ( ( ( # ` X ) e. RR /\ A. w e. ran F w <_ ( # ` X ) ) -> E. z e. RR A. w e. ran F w <_ z ) | 
						
							| 58 | 31 56 57 | syl2anc |  |-  ( ( H e. ( SubGrp ` G ) /\ X e. Fin /\ P pGrp S ) -> E. z e. RR A. w e. ran F w <_ z ) | 
						
							| 59 |  | suprzcl |  |-  ( ( ran F C_ ZZ /\ ran F =/= (/) /\ E. z e. RR A. w e. ran F w <_ z ) -> sup ( ran F , RR , < ) e. ran F ) | 
						
							| 60 | 14 28 58 59 | syl3anc |  |-  ( ( H e. ( SubGrp ` G ) /\ X e. Fin /\ P pGrp S ) -> sup ( ran F , RR , < ) e. ran F ) | 
						
							| 61 |  | fvelrnb |  |-  ( F Fn { y e. ( SubGrp ` G ) | ( P pGrp ( G |`s y ) /\ H C_ y ) } -> ( sup ( ran F , RR , < ) e. ran F <-> E. k e. { y e. ( SubGrp ` G ) | ( P pGrp ( G |`s y ) /\ H C_ y ) } ( F ` k ) = sup ( ran F , RR , < ) ) ) | 
						
							| 62 | 16 61 | ax-mp |  |-  ( sup ( ran F , RR , < ) e. ran F <-> E. k e. { y e. ( SubGrp ` G ) | ( P pGrp ( G |`s y ) /\ H C_ y ) } ( F ` k ) = sup ( ran F , RR , < ) ) | 
						
							| 63 | 60 62 | sylib |  |-  ( ( H e. ( SubGrp ` G ) /\ X e. Fin /\ P pGrp S ) -> E. k e. { y e. ( SubGrp ` G ) | ( P pGrp ( G |`s y ) /\ H C_ y ) } ( F ` k ) = sup ( ran F , RR , < ) ) | 
						
							| 64 |  | oveq2 |  |-  ( y = k -> ( G |`s y ) = ( G |`s k ) ) | 
						
							| 65 | 64 | breq2d |  |-  ( y = k -> ( P pGrp ( G |`s y ) <-> P pGrp ( G |`s k ) ) ) | 
						
							| 66 |  | sseq2 |  |-  ( y = k -> ( H C_ y <-> H C_ k ) ) | 
						
							| 67 | 65 66 | anbi12d |  |-  ( y = k -> ( ( P pGrp ( G |`s y ) /\ H C_ y ) <-> ( P pGrp ( G |`s k ) /\ H C_ k ) ) ) | 
						
							| 68 | 67 | rexrab |  |-  ( E. k e. { y e. ( SubGrp ` G ) | ( P pGrp ( G |`s y ) /\ H C_ y ) } ( F ` k ) = sup ( ran F , RR , < ) <-> E. k e. ( SubGrp ` G ) ( ( P pGrp ( G |`s k ) /\ H C_ k ) /\ ( F ` k ) = sup ( ran F , RR , < ) ) ) | 
						
							| 69 | 63 68 | sylib |  |-  ( ( H e. ( SubGrp ` G ) /\ X e. Fin /\ P pGrp S ) -> E. k e. ( SubGrp ` G ) ( ( P pGrp ( G |`s k ) /\ H C_ k ) /\ ( F ` k ) = sup ( ran F , RR , < ) ) ) | 
						
							| 70 |  | simpl3 |  |-  ( ( ( H e. ( SubGrp ` G ) /\ X e. Fin /\ P pGrp S ) /\ ( k e. ( SubGrp ` G ) /\ ( ( P pGrp ( G |`s k ) /\ H C_ k ) /\ ( F ` k ) = sup ( ran F , RR , < ) ) ) ) -> P pGrp S ) | 
						
							| 71 |  | pgpprm |  |-  ( P pGrp S -> P e. Prime ) | 
						
							| 72 | 70 71 | syl |  |-  ( ( ( H e. ( SubGrp ` G ) /\ X e. Fin /\ P pGrp S ) /\ ( k e. ( SubGrp ` G ) /\ ( ( P pGrp ( G |`s k ) /\ H C_ k ) /\ ( F ` k ) = sup ( ran F , RR , < ) ) ) ) -> P e. Prime ) | 
						
							| 73 |  | simprl |  |-  ( ( ( H e. ( SubGrp ` G ) /\ X e. Fin /\ P pGrp S ) /\ ( k e. ( SubGrp ` G ) /\ ( ( P pGrp ( G |`s k ) /\ H C_ k ) /\ ( F ` k ) = sup ( ran F , RR , < ) ) ) ) -> k e. ( SubGrp ` G ) ) | 
						
							| 74 |  | zssre |  |-  ZZ C_ RR | 
						
							| 75 | 14 74 | sstrdi |  |-  ( ( H e. ( SubGrp ` G ) /\ X e. Fin /\ P pGrp S ) -> ran F C_ RR ) | 
						
							| 76 | 75 | ad2antrr |  |-  ( ( ( ( H e. ( SubGrp ` G ) /\ X e. Fin /\ P pGrp S ) /\ ( k e. ( SubGrp ` G ) /\ ( ( P pGrp ( G |`s k ) /\ H C_ k ) /\ ( F ` k ) = sup ( ran F , RR , < ) ) ) ) /\ ( m e. ( SubGrp ` G ) /\ ( k C_ m /\ P pGrp ( G |`s m ) ) ) ) -> ran F C_ RR ) | 
						
							| 77 | 28 | ad2antrr |  |-  ( ( ( ( H e. ( SubGrp ` G ) /\ X e. Fin /\ P pGrp S ) /\ ( k e. ( SubGrp ` G ) /\ ( ( P pGrp ( G |`s k ) /\ H C_ k ) /\ ( F ` k ) = sup ( ran F , RR , < ) ) ) ) /\ ( m e. ( SubGrp ` G ) /\ ( k C_ m /\ P pGrp ( G |`s m ) ) ) ) -> ran F =/= (/) ) | 
						
							| 78 | 58 | ad2antrr |  |-  ( ( ( ( H e. ( SubGrp ` G ) /\ X e. Fin /\ P pGrp S ) /\ ( k e. ( SubGrp ` G ) /\ ( ( P pGrp ( G |`s k ) /\ H C_ k ) /\ ( F ` k ) = sup ( ran F , RR , < ) ) ) ) /\ ( m e. ( SubGrp ` G ) /\ ( k C_ m /\ P pGrp ( G |`s m ) ) ) ) -> E. z e. RR A. w e. ran F w <_ z ) | 
						
							| 79 |  | simprl |  |-  ( ( ( ( H e. ( SubGrp ` G ) /\ X e. Fin /\ P pGrp S ) /\ ( k e. ( SubGrp ` G ) /\ ( ( P pGrp ( G |`s k ) /\ H C_ k ) /\ ( F ` k ) = sup ( ran F , RR , < ) ) ) ) /\ ( m e. ( SubGrp ` G ) /\ ( k C_ m /\ P pGrp ( G |`s m ) ) ) ) -> m e. ( SubGrp ` G ) ) | 
						
							| 80 |  | simprrr |  |-  ( ( ( ( H e. ( SubGrp ` G ) /\ X e. Fin /\ P pGrp S ) /\ ( k e. ( SubGrp ` G ) /\ ( ( P pGrp ( G |`s k ) /\ H C_ k ) /\ ( F ` k ) = sup ( ran F , RR , < ) ) ) ) /\ ( m e. ( SubGrp ` G ) /\ ( k C_ m /\ P pGrp ( G |`s m ) ) ) ) -> P pGrp ( G |`s m ) ) | 
						
							| 81 |  | simprrl |  |-  ( ( ( H e. ( SubGrp ` G ) /\ X e. Fin /\ P pGrp S ) /\ ( k e. ( SubGrp ` G ) /\ ( ( P pGrp ( G |`s k ) /\ H C_ k ) /\ ( F ` k ) = sup ( ran F , RR , < ) ) ) ) -> ( P pGrp ( G |`s k ) /\ H C_ k ) ) | 
						
							| 82 | 81 | adantr |  |-  ( ( ( ( H e. ( SubGrp ` G ) /\ X e. Fin /\ P pGrp S ) /\ ( k e. ( SubGrp ` G ) /\ ( ( P pGrp ( G |`s k ) /\ H C_ k ) /\ ( F ` k ) = sup ( ran F , RR , < ) ) ) ) /\ ( m e. ( SubGrp ` G ) /\ ( k C_ m /\ P pGrp ( G |`s m ) ) ) ) -> ( P pGrp ( G |`s k ) /\ H C_ k ) ) | 
						
							| 83 | 82 | simprd |  |-  ( ( ( ( H e. ( SubGrp ` G ) /\ X e. Fin /\ P pGrp S ) /\ ( k e. ( SubGrp ` G ) /\ ( ( P pGrp ( G |`s k ) /\ H C_ k ) /\ ( F ` k ) = sup ( ran F , RR , < ) ) ) ) /\ ( m e. ( SubGrp ` G ) /\ ( k C_ m /\ P pGrp ( G |`s m ) ) ) ) -> H C_ k ) | 
						
							| 84 |  | simprrl |  |-  ( ( ( ( H e. ( SubGrp ` G ) /\ X e. Fin /\ P pGrp S ) /\ ( k e. ( SubGrp ` G ) /\ ( ( P pGrp ( G |`s k ) /\ H C_ k ) /\ ( F ` k ) = sup ( ran F , RR , < ) ) ) ) /\ ( m e. ( SubGrp ` G ) /\ ( k C_ m /\ P pGrp ( G |`s m ) ) ) ) -> k C_ m ) | 
						
							| 85 | 83 84 | sstrd |  |-  ( ( ( ( H e. ( SubGrp ` G ) /\ X e. Fin /\ P pGrp S ) /\ ( k e. ( SubGrp ` G ) /\ ( ( P pGrp ( G |`s k ) /\ H C_ k ) /\ ( F ` k ) = sup ( ran F , RR , < ) ) ) ) /\ ( m e. ( SubGrp ` G ) /\ ( k C_ m /\ P pGrp ( G |`s m ) ) ) ) -> H C_ m ) | 
						
							| 86 | 80 85 | jca |  |-  ( ( ( ( H e. ( SubGrp ` G ) /\ X e. Fin /\ P pGrp S ) /\ ( k e. ( SubGrp ` G ) /\ ( ( P pGrp ( G |`s k ) /\ H C_ k ) /\ ( F ` k ) = sup ( ran F , RR , < ) ) ) ) /\ ( m e. ( SubGrp ` G ) /\ ( k C_ m /\ P pGrp ( G |`s m ) ) ) ) -> ( P pGrp ( G |`s m ) /\ H C_ m ) ) | 
						
							| 87 | 39 79 86 | elrabd |  |-  ( ( ( ( H e. ( SubGrp ` G ) /\ X e. Fin /\ P pGrp S ) /\ ( k e. ( SubGrp ` G ) /\ ( ( P pGrp ( G |`s k ) /\ H C_ k ) /\ ( F ` k ) = sup ( ran F , RR , < ) ) ) ) /\ ( m e. ( SubGrp ` G ) /\ ( k C_ m /\ P pGrp ( G |`s m ) ) ) ) -> m e. { y e. ( SubGrp ` G ) | ( P pGrp ( G |`s y ) /\ H C_ y ) } ) | 
						
							| 88 | 87 34 | syl |  |-  ( ( ( ( H e. ( SubGrp ` G ) /\ X e. Fin /\ P pGrp S ) /\ ( k e. ( SubGrp ` G ) /\ ( ( P pGrp ( G |`s k ) /\ H C_ k ) /\ ( F ` k ) = sup ( ran F , RR , < ) ) ) ) /\ ( m e. ( SubGrp ` G ) /\ ( k C_ m /\ P pGrp ( G |`s m ) ) ) ) -> ( F ` m ) = ( # ` m ) ) | 
						
							| 89 |  | fnfvelrn |  |-  ( ( F Fn { y e. ( SubGrp ` G ) | ( P pGrp ( G |`s y ) /\ H C_ y ) } /\ m e. { y e. ( SubGrp ` G ) | ( P pGrp ( G |`s y ) /\ H C_ y ) } ) -> ( F ` m ) e. ran F ) | 
						
							| 90 | 16 87 89 | sylancr |  |-  ( ( ( ( H e. ( SubGrp ` G ) /\ X e. Fin /\ P pGrp S ) /\ ( k e. ( SubGrp ` G ) /\ ( ( P pGrp ( G |`s k ) /\ H C_ k ) /\ ( F ` k ) = sup ( ran F , RR , < ) ) ) ) /\ ( m e. ( SubGrp ` G ) /\ ( k C_ m /\ P pGrp ( G |`s m ) ) ) ) -> ( F ` m ) e. ran F ) | 
						
							| 91 | 88 90 | eqeltrrd |  |-  ( ( ( ( H e. ( SubGrp ` G ) /\ X e. Fin /\ P pGrp S ) /\ ( k e. ( SubGrp ` G ) /\ ( ( P pGrp ( G |`s k ) /\ H C_ k ) /\ ( F ` k ) = sup ( ran F , RR , < ) ) ) ) /\ ( m e. ( SubGrp ` G ) /\ ( k C_ m /\ P pGrp ( G |`s m ) ) ) ) -> ( # ` m ) e. ran F ) | 
						
							| 92 | 76 77 78 91 | suprubd |  |-  ( ( ( ( H e. ( SubGrp ` G ) /\ X e. Fin /\ P pGrp S ) /\ ( k e. ( SubGrp ` G ) /\ ( ( P pGrp ( G |`s k ) /\ H C_ k ) /\ ( F ` k ) = sup ( ran F , RR , < ) ) ) ) /\ ( m e. ( SubGrp ` G ) /\ ( k C_ m /\ P pGrp ( G |`s m ) ) ) ) -> ( # ` m ) <_ sup ( ran F , RR , < ) ) | 
						
							| 93 |  | simprrr |  |-  ( ( ( H e. ( SubGrp ` G ) /\ X e. Fin /\ P pGrp S ) /\ ( k e. ( SubGrp ` G ) /\ ( ( P pGrp ( G |`s k ) /\ H C_ k ) /\ ( F ` k ) = sup ( ran F , RR , < ) ) ) ) -> ( F ` k ) = sup ( ran F , RR , < ) ) | 
						
							| 94 | 93 | adantr |  |-  ( ( ( ( H e. ( SubGrp ` G ) /\ X e. Fin /\ P pGrp S ) /\ ( k e. ( SubGrp ` G ) /\ ( ( P pGrp ( G |`s k ) /\ H C_ k ) /\ ( F ` k ) = sup ( ran F , RR , < ) ) ) ) /\ ( m e. ( SubGrp ` G ) /\ ( k C_ m /\ P pGrp ( G |`s m ) ) ) ) -> ( F ` k ) = sup ( ran F , RR , < ) ) | 
						
							| 95 | 73 | adantr |  |-  ( ( ( ( H e. ( SubGrp ` G ) /\ X e. Fin /\ P pGrp S ) /\ ( k e. ( SubGrp ` G ) /\ ( ( P pGrp ( G |`s k ) /\ H C_ k ) /\ ( F ` k ) = sup ( ran F , RR , < ) ) ) ) /\ ( m e. ( SubGrp ` G ) /\ ( k C_ m /\ P pGrp ( G |`s m ) ) ) ) -> k e. ( SubGrp ` G ) ) | 
						
							| 96 | 67 95 82 | elrabd |  |-  ( ( ( ( H e. ( SubGrp ` G ) /\ X e. Fin /\ P pGrp S ) /\ ( k e. ( SubGrp ` G ) /\ ( ( P pGrp ( G |`s k ) /\ H C_ k ) /\ ( F ` k ) = sup ( ran F , RR , < ) ) ) ) /\ ( m e. ( SubGrp ` G ) /\ ( k C_ m /\ P pGrp ( G |`s m ) ) ) ) -> k e. { y e. ( SubGrp ` G ) | ( P pGrp ( G |`s y ) /\ H C_ y ) } ) | 
						
							| 97 |  | fveq2 |  |-  ( x = k -> ( # ` x ) = ( # ` k ) ) | 
						
							| 98 |  | fvex |  |-  ( # ` k ) e. _V | 
						
							| 99 | 97 3 98 | fvmpt |  |-  ( k e. { y e. ( SubGrp ` G ) | ( P pGrp ( G |`s y ) /\ H C_ y ) } -> ( F ` k ) = ( # ` k ) ) | 
						
							| 100 | 96 99 | syl |  |-  ( ( ( ( H e. ( SubGrp ` G ) /\ X e. Fin /\ P pGrp S ) /\ ( k e. ( SubGrp ` G ) /\ ( ( P pGrp ( G |`s k ) /\ H C_ k ) /\ ( F ` k ) = sup ( ran F , RR , < ) ) ) ) /\ ( m e. ( SubGrp ` G ) /\ ( k C_ m /\ P pGrp ( G |`s m ) ) ) ) -> ( F ` k ) = ( # ` k ) ) | 
						
							| 101 | 94 100 | eqtr3d |  |-  ( ( ( ( H e. ( SubGrp ` G ) /\ X e. Fin /\ P pGrp S ) /\ ( k e. ( SubGrp ` G ) /\ ( ( P pGrp ( G |`s k ) /\ H C_ k ) /\ ( F ` k ) = sup ( ran F , RR , < ) ) ) ) /\ ( m e. ( SubGrp ` G ) /\ ( k C_ m /\ P pGrp ( G |`s m ) ) ) ) -> sup ( ran F , RR , < ) = ( # ` k ) ) | 
						
							| 102 | 92 101 | breqtrd |  |-  ( ( ( ( H e. ( SubGrp ` G ) /\ X e. Fin /\ P pGrp S ) /\ ( k e. ( SubGrp ` G ) /\ ( ( P pGrp ( G |`s k ) /\ H C_ k ) /\ ( F ` k ) = sup ( ran F , RR , < ) ) ) ) /\ ( m e. ( SubGrp ` G ) /\ ( k C_ m /\ P pGrp ( G |`s m ) ) ) ) -> ( # ` m ) <_ ( # ` k ) ) | 
						
							| 103 |  | simpll2 |  |-  ( ( ( ( H e. ( SubGrp ` G ) /\ X e. Fin /\ P pGrp S ) /\ ( k e. ( SubGrp ` G ) /\ ( ( P pGrp ( G |`s k ) /\ H C_ k ) /\ ( F ` k ) = sup ( ran F , RR , < ) ) ) ) /\ ( m e. ( SubGrp ` G ) /\ ( k C_ m /\ P pGrp ( G |`s m ) ) ) ) -> X e. Fin ) | 
						
							| 104 | 42 | ad2antrl |  |-  ( ( ( ( H e. ( SubGrp ` G ) /\ X e. Fin /\ P pGrp S ) /\ ( k e. ( SubGrp ` G ) /\ ( ( P pGrp ( G |`s k ) /\ H C_ k ) /\ ( F ` k ) = sup ( ran F , RR , < ) ) ) ) /\ ( m e. ( SubGrp ` G ) /\ ( k C_ m /\ P pGrp ( G |`s m ) ) ) ) -> m C_ X ) | 
						
							| 105 | 103 104 | ssfid |  |-  ( ( ( ( H e. ( SubGrp ` G ) /\ X e. Fin /\ P pGrp S ) /\ ( k e. ( SubGrp ` G ) /\ ( ( P pGrp ( G |`s k ) /\ H C_ k ) /\ ( F ` k ) = sup ( ran F , RR , < ) ) ) ) /\ ( m e. ( SubGrp ` G ) /\ ( k C_ m /\ P pGrp ( G |`s m ) ) ) ) -> m e. Fin ) | 
						
							| 106 | 105 84 | ssfid |  |-  ( ( ( ( H e. ( SubGrp ` G ) /\ X e. Fin /\ P pGrp S ) /\ ( k e. ( SubGrp ` G ) /\ ( ( P pGrp ( G |`s k ) /\ H C_ k ) /\ ( F ` k ) = sup ( ran F , RR , < ) ) ) ) /\ ( m e. ( SubGrp ` G ) /\ ( k C_ m /\ P pGrp ( G |`s m ) ) ) ) -> k e. Fin ) | 
						
							| 107 |  | hashcl |  |-  ( m e. Fin -> ( # ` m ) e. NN0 ) | 
						
							| 108 |  | hashcl |  |-  ( k e. Fin -> ( # ` k ) e. NN0 ) | 
						
							| 109 |  | nn0re |  |-  ( ( # ` m ) e. NN0 -> ( # ` m ) e. RR ) | 
						
							| 110 |  | nn0re |  |-  ( ( # ` k ) e. NN0 -> ( # ` k ) e. RR ) | 
						
							| 111 |  | lenlt |  |-  ( ( ( # ` m ) e. RR /\ ( # ` k ) e. RR ) -> ( ( # ` m ) <_ ( # ` k ) <-> -. ( # ` k ) < ( # ` m ) ) ) | 
						
							| 112 | 109 110 111 | syl2an |  |-  ( ( ( # ` m ) e. NN0 /\ ( # ` k ) e. NN0 ) -> ( ( # ` m ) <_ ( # ` k ) <-> -. ( # ` k ) < ( # ` m ) ) ) | 
						
							| 113 | 107 108 112 | syl2an |  |-  ( ( m e. Fin /\ k e. Fin ) -> ( ( # ` m ) <_ ( # ` k ) <-> -. ( # ` k ) < ( # ` m ) ) ) | 
						
							| 114 | 105 106 113 | syl2anc |  |-  ( ( ( ( H e. ( SubGrp ` G ) /\ X e. Fin /\ P pGrp S ) /\ ( k e. ( SubGrp ` G ) /\ ( ( P pGrp ( G |`s k ) /\ H C_ k ) /\ ( F ` k ) = sup ( ran F , RR , < ) ) ) ) /\ ( m e. ( SubGrp ` G ) /\ ( k C_ m /\ P pGrp ( G |`s m ) ) ) ) -> ( ( # ` m ) <_ ( # ` k ) <-> -. ( # ` k ) < ( # ` m ) ) ) | 
						
							| 115 | 102 114 | mpbid |  |-  ( ( ( ( H e. ( SubGrp ` G ) /\ X e. Fin /\ P pGrp S ) /\ ( k e. ( SubGrp ` G ) /\ ( ( P pGrp ( G |`s k ) /\ H C_ k ) /\ ( F ` k ) = sup ( ran F , RR , < ) ) ) ) /\ ( m e. ( SubGrp ` G ) /\ ( k C_ m /\ P pGrp ( G |`s m ) ) ) ) -> -. ( # ` k ) < ( # ` m ) ) | 
						
							| 116 |  | php3 |  |-  ( ( m e. Fin /\ k C. m ) -> k ~< m ) | 
						
							| 117 | 116 | ex |  |-  ( m e. Fin -> ( k C. m -> k ~< m ) ) | 
						
							| 118 | 105 117 | syl |  |-  ( ( ( ( H e. ( SubGrp ` G ) /\ X e. Fin /\ P pGrp S ) /\ ( k e. ( SubGrp ` G ) /\ ( ( P pGrp ( G |`s k ) /\ H C_ k ) /\ ( F ` k ) = sup ( ran F , RR , < ) ) ) ) /\ ( m e. ( SubGrp ` G ) /\ ( k C_ m /\ P pGrp ( G |`s m ) ) ) ) -> ( k C. m -> k ~< m ) ) | 
						
							| 119 |  | hashsdom |  |-  ( ( k e. Fin /\ m e. Fin ) -> ( ( # ` k ) < ( # ` m ) <-> k ~< m ) ) | 
						
							| 120 | 106 105 119 | syl2anc |  |-  ( ( ( ( H e. ( SubGrp ` G ) /\ X e. Fin /\ P pGrp S ) /\ ( k e. ( SubGrp ` G ) /\ ( ( P pGrp ( G |`s k ) /\ H C_ k ) /\ ( F ` k ) = sup ( ran F , RR , < ) ) ) ) /\ ( m e. ( SubGrp ` G ) /\ ( k C_ m /\ P pGrp ( G |`s m ) ) ) ) -> ( ( # ` k ) < ( # ` m ) <-> k ~< m ) ) | 
						
							| 121 | 118 120 | sylibrd |  |-  ( ( ( ( H e. ( SubGrp ` G ) /\ X e. Fin /\ P pGrp S ) /\ ( k e. ( SubGrp ` G ) /\ ( ( P pGrp ( G |`s k ) /\ H C_ k ) /\ ( F ` k ) = sup ( ran F , RR , < ) ) ) ) /\ ( m e. ( SubGrp ` G ) /\ ( k C_ m /\ P pGrp ( G |`s m ) ) ) ) -> ( k C. m -> ( # ` k ) < ( # ` m ) ) ) | 
						
							| 122 | 115 121 | mtod |  |-  ( ( ( ( H e. ( SubGrp ` G ) /\ X e. Fin /\ P pGrp S ) /\ ( k e. ( SubGrp ` G ) /\ ( ( P pGrp ( G |`s k ) /\ H C_ k ) /\ ( F ` k ) = sup ( ran F , RR , < ) ) ) ) /\ ( m e. ( SubGrp ` G ) /\ ( k C_ m /\ P pGrp ( G |`s m ) ) ) ) -> -. k C. m ) | 
						
							| 123 |  | sspss |  |-  ( k C_ m <-> ( k C. m \/ k = m ) ) | 
						
							| 124 | 84 123 | sylib |  |-  ( ( ( ( H e. ( SubGrp ` G ) /\ X e. Fin /\ P pGrp S ) /\ ( k e. ( SubGrp ` G ) /\ ( ( P pGrp ( G |`s k ) /\ H C_ k ) /\ ( F ` k ) = sup ( ran F , RR , < ) ) ) ) /\ ( m e. ( SubGrp ` G ) /\ ( k C_ m /\ P pGrp ( G |`s m ) ) ) ) -> ( k C. m \/ k = m ) ) | 
						
							| 125 | 124 | ord |  |-  ( ( ( ( H e. ( SubGrp ` G ) /\ X e. Fin /\ P pGrp S ) /\ ( k e. ( SubGrp ` G ) /\ ( ( P pGrp ( G |`s k ) /\ H C_ k ) /\ ( F ` k ) = sup ( ran F , RR , < ) ) ) ) /\ ( m e. ( SubGrp ` G ) /\ ( k C_ m /\ P pGrp ( G |`s m ) ) ) ) -> ( -. k C. m -> k = m ) ) | 
						
							| 126 | 122 125 | mpd |  |-  ( ( ( ( H e. ( SubGrp ` G ) /\ X e. Fin /\ P pGrp S ) /\ ( k e. ( SubGrp ` G ) /\ ( ( P pGrp ( G |`s k ) /\ H C_ k ) /\ ( F ` k ) = sup ( ran F , RR , < ) ) ) ) /\ ( m e. ( SubGrp ` G ) /\ ( k C_ m /\ P pGrp ( G |`s m ) ) ) ) -> k = m ) | 
						
							| 127 | 126 | expr |  |-  ( ( ( ( H e. ( SubGrp ` G ) /\ X e. Fin /\ P pGrp S ) /\ ( k e. ( SubGrp ` G ) /\ ( ( P pGrp ( G |`s k ) /\ H C_ k ) /\ ( F ` k ) = sup ( ran F , RR , < ) ) ) ) /\ m e. ( SubGrp ` G ) ) -> ( ( k C_ m /\ P pGrp ( G |`s m ) ) -> k = m ) ) | 
						
							| 128 | 81 | simpld |  |-  ( ( ( H e. ( SubGrp ` G ) /\ X e. Fin /\ P pGrp S ) /\ ( k e. ( SubGrp ` G ) /\ ( ( P pGrp ( G |`s k ) /\ H C_ k ) /\ ( F ` k ) = sup ( ran F , RR , < ) ) ) ) -> P pGrp ( G |`s k ) ) | 
						
							| 129 | 128 | adantr |  |-  ( ( ( ( H e. ( SubGrp ` G ) /\ X e. Fin /\ P pGrp S ) /\ ( k e. ( SubGrp ` G ) /\ ( ( P pGrp ( G |`s k ) /\ H C_ k ) /\ ( F ` k ) = sup ( ran F , RR , < ) ) ) ) /\ m e. ( SubGrp ` G ) ) -> P pGrp ( G |`s k ) ) | 
						
							| 130 |  | oveq2 |  |-  ( k = m -> ( G |`s k ) = ( G |`s m ) ) | 
						
							| 131 | 130 | breq2d |  |-  ( k = m -> ( P pGrp ( G |`s k ) <-> P pGrp ( G |`s m ) ) ) | 
						
							| 132 |  | eqimss |  |-  ( k = m -> k C_ m ) | 
						
							| 133 | 132 | biantrurd |  |-  ( k = m -> ( P pGrp ( G |`s m ) <-> ( k C_ m /\ P pGrp ( G |`s m ) ) ) ) | 
						
							| 134 | 131 133 | bitrd |  |-  ( k = m -> ( P pGrp ( G |`s k ) <-> ( k C_ m /\ P pGrp ( G |`s m ) ) ) ) | 
						
							| 135 | 129 134 | syl5ibcom |  |-  ( ( ( ( H e. ( SubGrp ` G ) /\ X e. Fin /\ P pGrp S ) /\ ( k e. ( SubGrp ` G ) /\ ( ( P pGrp ( G |`s k ) /\ H C_ k ) /\ ( F ` k ) = sup ( ran F , RR , < ) ) ) ) /\ m e. ( SubGrp ` G ) ) -> ( k = m -> ( k C_ m /\ P pGrp ( G |`s m ) ) ) ) | 
						
							| 136 | 127 135 | impbid |  |-  ( ( ( ( H e. ( SubGrp ` G ) /\ X e. Fin /\ P pGrp S ) /\ ( k e. ( SubGrp ` G ) /\ ( ( P pGrp ( G |`s k ) /\ H C_ k ) /\ ( F ` k ) = sup ( ran F , RR , < ) ) ) ) /\ m e. ( SubGrp ` G ) ) -> ( ( k C_ m /\ P pGrp ( G |`s m ) ) <-> k = m ) ) | 
						
							| 137 | 136 | ralrimiva |  |-  ( ( ( H e. ( SubGrp ` G ) /\ X e. Fin /\ P pGrp S ) /\ ( k e. ( SubGrp ` G ) /\ ( ( P pGrp ( G |`s k ) /\ H C_ k ) /\ ( F ` k ) = sup ( ran F , RR , < ) ) ) ) -> A. m e. ( SubGrp ` G ) ( ( k C_ m /\ P pGrp ( G |`s m ) ) <-> k = m ) ) | 
						
							| 138 |  | isslw |  |-  ( k e. ( P pSyl G ) <-> ( P e. Prime /\ k e. ( SubGrp ` G ) /\ A. m e. ( SubGrp ` G ) ( ( k C_ m /\ P pGrp ( G |`s m ) ) <-> k = m ) ) ) | 
						
							| 139 | 72 73 137 138 | syl3anbrc |  |-  ( ( ( H e. ( SubGrp ` G ) /\ X e. Fin /\ P pGrp S ) /\ ( k e. ( SubGrp ` G ) /\ ( ( P pGrp ( G |`s k ) /\ H C_ k ) /\ ( F ` k ) = sup ( ran F , RR , < ) ) ) ) -> k e. ( P pSyl G ) ) | 
						
							| 140 | 81 | simprd |  |-  ( ( ( H e. ( SubGrp ` G ) /\ X e. Fin /\ P pGrp S ) /\ ( k e. ( SubGrp ` G ) /\ ( ( P pGrp ( G |`s k ) /\ H C_ k ) /\ ( F ` k ) = sup ( ran F , RR , < ) ) ) ) -> H C_ k ) | 
						
							| 141 | 69 139 140 | reximssdv |  |-  ( ( H e. ( SubGrp ` G ) /\ X e. Fin /\ P pGrp S ) -> E. k e. ( P pSyl G ) H C_ k ) |