| Step | Hyp | Ref | Expression | 
						
							| 1 |  | slwn0.1 |  |-  X = ( Base ` G ) | 
						
							| 2 |  | eqid |  |-  ( 0g ` G ) = ( 0g ` G ) | 
						
							| 3 | 2 | 0subg |  |-  ( G e. Grp -> { ( 0g ` G ) } e. ( SubGrp ` G ) ) | 
						
							| 4 | 3 | 3ad2ant1 |  |-  ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) -> { ( 0g ` G ) } e. ( SubGrp ` G ) ) | 
						
							| 5 |  | simp2 |  |-  ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) -> X e. Fin ) | 
						
							| 6 | 2 | pgp0 |  |-  ( ( G e. Grp /\ P e. Prime ) -> P pGrp ( G |`s { ( 0g ` G ) } ) ) | 
						
							| 7 | 6 | 3adant2 |  |-  ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) -> P pGrp ( G |`s { ( 0g ` G ) } ) ) | 
						
							| 8 |  | eqid |  |-  ( G |`s { ( 0g ` G ) } ) = ( G |`s { ( 0g ` G ) } ) | 
						
							| 9 |  | eqid |  |-  ( x e. { y e. ( SubGrp ` G ) | ( P pGrp ( G |`s y ) /\ { ( 0g ` G ) } C_ y ) } |-> ( # ` x ) ) = ( x e. { y e. ( SubGrp ` G ) | ( P pGrp ( G |`s y ) /\ { ( 0g ` G ) } C_ y ) } |-> ( # ` x ) ) | 
						
							| 10 | 1 8 9 | pgpssslw |  |-  ( ( { ( 0g ` G ) } e. ( SubGrp ` G ) /\ X e. Fin /\ P pGrp ( G |`s { ( 0g ` G ) } ) ) -> E. z e. ( P pSyl G ) { ( 0g ` G ) } C_ z ) | 
						
							| 11 | 4 5 7 10 | syl3anc |  |-  ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) -> E. z e. ( P pSyl G ) { ( 0g ` G ) } C_ z ) | 
						
							| 12 |  | rexn0 |  |-  ( E. z e. ( P pSyl G ) { ( 0g ` G ) } C_ z -> ( P pSyl G ) =/= (/) ) | 
						
							| 13 | 11 12 | syl |  |-  ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) -> ( P pSyl G ) =/= (/) ) |