Metamath Proof Explorer


Theorem slwn0

Description: Every finite group contains a Sylow P -subgroup. (Contributed by Mario Carneiro, 16-Jan-2015)

Ref Expression
Hypothesis slwn0.1 X=BaseG
Assertion slwn0 GGrpXFinPPpSylG

Proof

Step Hyp Ref Expression
1 slwn0.1 X=BaseG
2 eqid 0G=0G
3 2 0subg GGrp0GSubGrpG
4 3 3ad2ant1 GGrpXFinP0GSubGrpG
5 simp2 GGrpXFinPXFin
6 2 pgp0 GGrpPPpGrpG𝑠0G
7 6 3adant2 GGrpXFinPPpGrpG𝑠0G
8 eqid G𝑠0G=G𝑠0G
9 eqid xySubGrpG|PpGrpG𝑠y0Gyx=xySubGrpG|PpGrpG𝑠y0Gyx
10 1 8 9 pgpssslw 0GSubGrpGXFinPpGrpG𝑠0GzPpSylG0Gz
11 4 5 7 10 syl3anc GGrpXFinPzPpSylG0Gz
12 rexn0 zPpSylG0GzPpSylG
13 11 12 syl GGrpXFinPPpSylG