Description: Every finite group contains a Sylow P -subgroup. (Contributed by Mario Carneiro, 16-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | slwn0.1 | |
|
Assertion | slwn0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | slwn0.1 | |
|
2 | eqid | |
|
3 | 2 | 0subg | |
4 | 3 | 3ad2ant1 | |
5 | simp2 | |
|
6 | 2 | pgp0 | |
7 | 6 | 3adant2 | |
8 | eqid | |
|
9 | eqid | |
|
10 | 1 8 9 | pgpssslw | |
11 | 4 5 7 10 | syl3anc | |
12 | rexn0 | |
|
13 | 11 12 | syl | |