| Step | Hyp | Ref | Expression | 
						
							| 1 |  | slwn0.1 | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | eqid | ⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 3 | 2 | 0subg | ⊢ ( 𝐺  ∈  Grp  →  { ( 0g ‘ 𝐺 ) }  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 4 | 3 | 3ad2ant1 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  →  { ( 0g ‘ 𝐺 ) }  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 5 |  | simp2 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  →  𝑋  ∈  Fin ) | 
						
							| 6 | 2 | pgp0 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑃  ∈  ℙ )  →  𝑃  pGrp  ( 𝐺  ↾s  { ( 0g ‘ 𝐺 ) } ) ) | 
						
							| 7 | 6 | 3adant2 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  →  𝑃  pGrp  ( 𝐺  ↾s  { ( 0g ‘ 𝐺 ) } ) ) | 
						
							| 8 |  | eqid | ⊢ ( 𝐺  ↾s  { ( 0g ‘ 𝐺 ) } )  =  ( 𝐺  ↾s  { ( 0g ‘ 𝐺 ) } ) | 
						
							| 9 |  | eqid | ⊢ ( 𝑥  ∈  { 𝑦  ∈  ( SubGrp ‘ 𝐺 )  ∣  ( 𝑃  pGrp  ( 𝐺  ↾s  𝑦 )  ∧  { ( 0g ‘ 𝐺 ) }  ⊆  𝑦 ) }  ↦  ( ♯ ‘ 𝑥 ) )  =  ( 𝑥  ∈  { 𝑦  ∈  ( SubGrp ‘ 𝐺 )  ∣  ( 𝑃  pGrp  ( 𝐺  ↾s  𝑦 )  ∧  { ( 0g ‘ 𝐺 ) }  ⊆  𝑦 ) }  ↦  ( ♯ ‘ 𝑥 ) ) | 
						
							| 10 | 1 8 9 | pgpssslw | ⊢ ( ( { ( 0g ‘ 𝐺 ) }  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑋  ∈  Fin  ∧  𝑃  pGrp  ( 𝐺  ↾s  { ( 0g ‘ 𝐺 ) } ) )  →  ∃ 𝑧  ∈  ( 𝑃  pSyl  𝐺 ) { ( 0g ‘ 𝐺 ) }  ⊆  𝑧 ) | 
						
							| 11 | 4 5 7 10 | syl3anc | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  →  ∃ 𝑧  ∈  ( 𝑃  pSyl  𝐺 ) { ( 0g ‘ 𝐺 ) }  ⊆  𝑧 ) | 
						
							| 12 |  | rexn0 | ⊢ ( ∃ 𝑧  ∈  ( 𝑃  pSyl  𝐺 ) { ( 0g ‘ 𝐺 ) }  ⊆  𝑧  →  ( 𝑃  pSyl  𝐺 )  ≠  ∅ ) | 
						
							| 13 | 11 12 | syl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  →  ( 𝑃  pSyl  𝐺 )  ≠  ∅ ) |