| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subgslw.1 |
⊢ 𝐻 = ( 𝐺 ↾s 𝑆 ) |
| 2 |
|
slwprm |
⊢ ( 𝐾 ∈ ( 𝑃 pSyl 𝐺 ) → 𝑃 ∈ ℙ ) |
| 3 |
2
|
3ad2ant2 |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐾 ∈ ( 𝑃 pSyl 𝐺 ) ∧ 𝐾 ⊆ 𝑆 ) → 𝑃 ∈ ℙ ) |
| 4 |
|
slwsubg |
⊢ ( 𝐾 ∈ ( 𝑃 pSyl 𝐺 ) → 𝐾 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 5 |
4
|
3ad2ant2 |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐾 ∈ ( 𝑃 pSyl 𝐺 ) ∧ 𝐾 ⊆ 𝑆 ) → 𝐾 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 6 |
|
simp3 |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐾 ∈ ( 𝑃 pSyl 𝐺 ) ∧ 𝐾 ⊆ 𝑆 ) → 𝐾 ⊆ 𝑆 ) |
| 7 |
1
|
subsubg |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐾 ∈ ( SubGrp ‘ 𝐻 ) ↔ ( 𝐾 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐾 ⊆ 𝑆 ) ) ) |
| 8 |
7
|
3ad2ant1 |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐾 ∈ ( 𝑃 pSyl 𝐺 ) ∧ 𝐾 ⊆ 𝑆 ) → ( 𝐾 ∈ ( SubGrp ‘ 𝐻 ) ↔ ( 𝐾 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐾 ⊆ 𝑆 ) ) ) |
| 9 |
5 6 8
|
mpbir2and |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐾 ∈ ( 𝑃 pSyl 𝐺 ) ∧ 𝐾 ⊆ 𝑆 ) → 𝐾 ∈ ( SubGrp ‘ 𝐻 ) ) |
| 10 |
1
|
oveq1i |
⊢ ( 𝐻 ↾s 𝑥 ) = ( ( 𝐺 ↾s 𝑆 ) ↾s 𝑥 ) |
| 11 |
|
simpl1 |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐾 ∈ ( 𝑃 pSyl 𝐺 ) ∧ 𝐾 ⊆ 𝑆 ) ∧ 𝑥 ∈ ( SubGrp ‘ 𝐻 ) ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 12 |
1
|
subsubg |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑥 ∈ ( SubGrp ‘ 𝐻 ) ↔ ( 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ⊆ 𝑆 ) ) ) |
| 13 |
12
|
3ad2ant1 |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐾 ∈ ( 𝑃 pSyl 𝐺 ) ∧ 𝐾 ⊆ 𝑆 ) → ( 𝑥 ∈ ( SubGrp ‘ 𝐻 ) ↔ ( 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ⊆ 𝑆 ) ) ) |
| 14 |
13
|
simplbda |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐾 ∈ ( 𝑃 pSyl 𝐺 ) ∧ 𝐾 ⊆ 𝑆 ) ∧ 𝑥 ∈ ( SubGrp ‘ 𝐻 ) ) → 𝑥 ⊆ 𝑆 ) |
| 15 |
|
ressabs |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ⊆ 𝑆 ) → ( ( 𝐺 ↾s 𝑆 ) ↾s 𝑥 ) = ( 𝐺 ↾s 𝑥 ) ) |
| 16 |
11 14 15
|
syl2anc |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐾 ∈ ( 𝑃 pSyl 𝐺 ) ∧ 𝐾 ⊆ 𝑆 ) ∧ 𝑥 ∈ ( SubGrp ‘ 𝐻 ) ) → ( ( 𝐺 ↾s 𝑆 ) ↾s 𝑥 ) = ( 𝐺 ↾s 𝑥 ) ) |
| 17 |
10 16
|
eqtrid |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐾 ∈ ( 𝑃 pSyl 𝐺 ) ∧ 𝐾 ⊆ 𝑆 ) ∧ 𝑥 ∈ ( SubGrp ‘ 𝐻 ) ) → ( 𝐻 ↾s 𝑥 ) = ( 𝐺 ↾s 𝑥 ) ) |
| 18 |
17
|
breq2d |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐾 ∈ ( 𝑃 pSyl 𝐺 ) ∧ 𝐾 ⊆ 𝑆 ) ∧ 𝑥 ∈ ( SubGrp ‘ 𝐻 ) ) → ( 𝑃 pGrp ( 𝐻 ↾s 𝑥 ) ↔ 𝑃 pGrp ( 𝐺 ↾s 𝑥 ) ) ) |
| 19 |
18
|
anbi2d |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐾 ∈ ( 𝑃 pSyl 𝐺 ) ∧ 𝐾 ⊆ 𝑆 ) ∧ 𝑥 ∈ ( SubGrp ‘ 𝐻 ) ) → ( ( 𝐾 ⊆ 𝑥 ∧ 𝑃 pGrp ( 𝐻 ↾s 𝑥 ) ) ↔ ( 𝐾 ⊆ 𝑥 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑥 ) ) ) ) |
| 20 |
|
simpl2 |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐾 ∈ ( 𝑃 pSyl 𝐺 ) ∧ 𝐾 ⊆ 𝑆 ) ∧ 𝑥 ∈ ( SubGrp ‘ 𝐻 ) ) → 𝐾 ∈ ( 𝑃 pSyl 𝐺 ) ) |
| 21 |
13
|
simprbda |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐾 ∈ ( 𝑃 pSyl 𝐺 ) ∧ 𝐾 ⊆ 𝑆 ) ∧ 𝑥 ∈ ( SubGrp ‘ 𝐻 ) ) → 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 22 |
|
eqid |
⊢ ( 𝐺 ↾s 𝑥 ) = ( 𝐺 ↾s 𝑥 ) |
| 23 |
22
|
slwispgp |
⊢ ( ( 𝐾 ∈ ( 𝑃 pSyl 𝐺 ) ∧ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( 𝐾 ⊆ 𝑥 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑥 ) ) ↔ 𝐾 = 𝑥 ) ) |
| 24 |
20 21 23
|
syl2anc |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐾 ∈ ( 𝑃 pSyl 𝐺 ) ∧ 𝐾 ⊆ 𝑆 ) ∧ 𝑥 ∈ ( SubGrp ‘ 𝐻 ) ) → ( ( 𝐾 ⊆ 𝑥 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑥 ) ) ↔ 𝐾 = 𝑥 ) ) |
| 25 |
19 24
|
bitrd |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐾 ∈ ( 𝑃 pSyl 𝐺 ) ∧ 𝐾 ⊆ 𝑆 ) ∧ 𝑥 ∈ ( SubGrp ‘ 𝐻 ) ) → ( ( 𝐾 ⊆ 𝑥 ∧ 𝑃 pGrp ( 𝐻 ↾s 𝑥 ) ) ↔ 𝐾 = 𝑥 ) ) |
| 26 |
25
|
ralrimiva |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐾 ∈ ( 𝑃 pSyl 𝐺 ) ∧ 𝐾 ⊆ 𝑆 ) → ∀ 𝑥 ∈ ( SubGrp ‘ 𝐻 ) ( ( 𝐾 ⊆ 𝑥 ∧ 𝑃 pGrp ( 𝐻 ↾s 𝑥 ) ) ↔ 𝐾 = 𝑥 ) ) |
| 27 |
|
isslw |
⊢ ( 𝐾 ∈ ( 𝑃 pSyl 𝐻 ) ↔ ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ( SubGrp ‘ 𝐻 ) ∧ ∀ 𝑥 ∈ ( SubGrp ‘ 𝐻 ) ( ( 𝐾 ⊆ 𝑥 ∧ 𝑃 pGrp ( 𝐻 ↾s 𝑥 ) ) ↔ 𝐾 = 𝑥 ) ) ) |
| 28 |
3 9 26 27
|
syl3anbrc |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐾 ∈ ( 𝑃 pSyl 𝐺 ) ∧ 𝐾 ⊆ 𝑆 ) → 𝐾 ∈ ( 𝑃 pSyl 𝐻 ) ) |