| Step | Hyp | Ref | Expression | 
						
							| 1 |  | subgslw.1 | ⊢ 𝐻  =  ( 𝐺  ↾s  𝑆 ) | 
						
							| 2 |  | slwprm | ⊢ ( 𝐾  ∈  ( 𝑃  pSyl  𝐺 )  →  𝑃  ∈  ℙ ) | 
						
							| 3 | 2 | 3ad2ant2 | ⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐾  ∈  ( 𝑃  pSyl  𝐺 )  ∧  𝐾  ⊆  𝑆 )  →  𝑃  ∈  ℙ ) | 
						
							| 4 |  | slwsubg | ⊢ ( 𝐾  ∈  ( 𝑃  pSyl  𝐺 )  →  𝐾  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 5 | 4 | 3ad2ant2 | ⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐾  ∈  ( 𝑃  pSyl  𝐺 )  ∧  𝐾  ⊆  𝑆 )  →  𝐾  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 6 |  | simp3 | ⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐾  ∈  ( 𝑃  pSyl  𝐺 )  ∧  𝐾  ⊆  𝑆 )  →  𝐾  ⊆  𝑆 ) | 
						
							| 7 | 1 | subsubg | ⊢ ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  →  ( 𝐾  ∈  ( SubGrp ‘ 𝐻 )  ↔  ( 𝐾  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐾  ⊆  𝑆 ) ) ) | 
						
							| 8 | 7 | 3ad2ant1 | ⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐾  ∈  ( 𝑃  pSyl  𝐺 )  ∧  𝐾  ⊆  𝑆 )  →  ( 𝐾  ∈  ( SubGrp ‘ 𝐻 )  ↔  ( 𝐾  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐾  ⊆  𝑆 ) ) ) | 
						
							| 9 | 5 6 8 | mpbir2and | ⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐾  ∈  ( 𝑃  pSyl  𝐺 )  ∧  𝐾  ⊆  𝑆 )  →  𝐾  ∈  ( SubGrp ‘ 𝐻 ) ) | 
						
							| 10 | 1 | oveq1i | ⊢ ( 𝐻  ↾s  𝑥 )  =  ( ( 𝐺  ↾s  𝑆 )  ↾s  𝑥 ) | 
						
							| 11 |  | simpl1 | ⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐾  ∈  ( 𝑃  pSyl  𝐺 )  ∧  𝐾  ⊆  𝑆 )  ∧  𝑥  ∈  ( SubGrp ‘ 𝐻 ) )  →  𝑆  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 12 | 1 | subsubg | ⊢ ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  →  ( 𝑥  ∈  ( SubGrp ‘ 𝐻 )  ↔  ( 𝑥  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑥  ⊆  𝑆 ) ) ) | 
						
							| 13 | 12 | 3ad2ant1 | ⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐾  ∈  ( 𝑃  pSyl  𝐺 )  ∧  𝐾  ⊆  𝑆 )  →  ( 𝑥  ∈  ( SubGrp ‘ 𝐻 )  ↔  ( 𝑥  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑥  ⊆  𝑆 ) ) ) | 
						
							| 14 | 13 | simplbda | ⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐾  ∈  ( 𝑃  pSyl  𝐺 )  ∧  𝐾  ⊆  𝑆 )  ∧  𝑥  ∈  ( SubGrp ‘ 𝐻 ) )  →  𝑥  ⊆  𝑆 ) | 
						
							| 15 |  | ressabs | ⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑥  ⊆  𝑆 )  →  ( ( 𝐺  ↾s  𝑆 )  ↾s  𝑥 )  =  ( 𝐺  ↾s  𝑥 ) ) | 
						
							| 16 | 11 14 15 | syl2anc | ⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐾  ∈  ( 𝑃  pSyl  𝐺 )  ∧  𝐾  ⊆  𝑆 )  ∧  𝑥  ∈  ( SubGrp ‘ 𝐻 ) )  →  ( ( 𝐺  ↾s  𝑆 )  ↾s  𝑥 )  =  ( 𝐺  ↾s  𝑥 ) ) | 
						
							| 17 | 10 16 | eqtrid | ⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐾  ∈  ( 𝑃  pSyl  𝐺 )  ∧  𝐾  ⊆  𝑆 )  ∧  𝑥  ∈  ( SubGrp ‘ 𝐻 ) )  →  ( 𝐻  ↾s  𝑥 )  =  ( 𝐺  ↾s  𝑥 ) ) | 
						
							| 18 | 17 | breq2d | ⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐾  ∈  ( 𝑃  pSyl  𝐺 )  ∧  𝐾  ⊆  𝑆 )  ∧  𝑥  ∈  ( SubGrp ‘ 𝐻 ) )  →  ( 𝑃  pGrp  ( 𝐻  ↾s  𝑥 )  ↔  𝑃  pGrp  ( 𝐺  ↾s  𝑥 ) ) ) | 
						
							| 19 | 18 | anbi2d | ⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐾  ∈  ( 𝑃  pSyl  𝐺 )  ∧  𝐾  ⊆  𝑆 )  ∧  𝑥  ∈  ( SubGrp ‘ 𝐻 ) )  →  ( ( 𝐾  ⊆  𝑥  ∧  𝑃  pGrp  ( 𝐻  ↾s  𝑥 ) )  ↔  ( 𝐾  ⊆  𝑥  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑥 ) ) ) ) | 
						
							| 20 |  | simpl2 | ⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐾  ∈  ( 𝑃  pSyl  𝐺 )  ∧  𝐾  ⊆  𝑆 )  ∧  𝑥  ∈  ( SubGrp ‘ 𝐻 ) )  →  𝐾  ∈  ( 𝑃  pSyl  𝐺 ) ) | 
						
							| 21 | 13 | simprbda | ⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐾  ∈  ( 𝑃  pSyl  𝐺 )  ∧  𝐾  ⊆  𝑆 )  ∧  𝑥  ∈  ( SubGrp ‘ 𝐻 ) )  →  𝑥  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 22 |  | eqid | ⊢ ( 𝐺  ↾s  𝑥 )  =  ( 𝐺  ↾s  𝑥 ) | 
						
							| 23 | 22 | slwispgp | ⊢ ( ( 𝐾  ∈  ( 𝑃  pSyl  𝐺 )  ∧  𝑥  ∈  ( SubGrp ‘ 𝐺 ) )  →  ( ( 𝐾  ⊆  𝑥  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑥 ) )  ↔  𝐾  =  𝑥 ) ) | 
						
							| 24 | 20 21 23 | syl2anc | ⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐾  ∈  ( 𝑃  pSyl  𝐺 )  ∧  𝐾  ⊆  𝑆 )  ∧  𝑥  ∈  ( SubGrp ‘ 𝐻 ) )  →  ( ( 𝐾  ⊆  𝑥  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑥 ) )  ↔  𝐾  =  𝑥 ) ) | 
						
							| 25 | 19 24 | bitrd | ⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐾  ∈  ( 𝑃  pSyl  𝐺 )  ∧  𝐾  ⊆  𝑆 )  ∧  𝑥  ∈  ( SubGrp ‘ 𝐻 ) )  →  ( ( 𝐾  ⊆  𝑥  ∧  𝑃  pGrp  ( 𝐻  ↾s  𝑥 ) )  ↔  𝐾  =  𝑥 ) ) | 
						
							| 26 | 25 | ralrimiva | ⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐾  ∈  ( 𝑃  pSyl  𝐺 )  ∧  𝐾  ⊆  𝑆 )  →  ∀ 𝑥  ∈  ( SubGrp ‘ 𝐻 ) ( ( 𝐾  ⊆  𝑥  ∧  𝑃  pGrp  ( 𝐻  ↾s  𝑥 ) )  ↔  𝐾  =  𝑥 ) ) | 
						
							| 27 |  | isslw | ⊢ ( 𝐾  ∈  ( 𝑃  pSyl  𝐻 )  ↔  ( 𝑃  ∈  ℙ  ∧  𝐾  ∈  ( SubGrp ‘ 𝐻 )  ∧  ∀ 𝑥  ∈  ( SubGrp ‘ 𝐻 ) ( ( 𝐾  ⊆  𝑥  ∧  𝑃  pGrp  ( 𝐻  ↾s  𝑥 ) )  ↔  𝐾  =  𝑥 ) ) ) | 
						
							| 28 | 3 9 26 27 | syl3anbrc | ⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐾  ∈  ( 𝑃  pSyl  𝐺 )  ∧  𝐾  ⊆  𝑆 )  →  𝐾  ∈  ( 𝑃  pSyl  𝐻 ) ) |