Metamath Proof Explorer


Theorem slwispgp

Description: Defining property of a Sylow P -subgroup. (Contributed by Mario Carneiro, 16-Jan-2015)

Ref Expression
Hypothesis slwispgp.1 𝑆 = ( 𝐺s 𝐾 )
Assertion slwispgp ( ( 𝐻 ∈ ( 𝑃 pSyl 𝐺 ) ∧ 𝐾 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( 𝐻𝐾𝑃 pGrp 𝑆 ) ↔ 𝐻 = 𝐾 ) )

Proof

Step Hyp Ref Expression
1 slwispgp.1 𝑆 = ( 𝐺s 𝐾 )
2 isslw ( 𝐻 ∈ ( 𝑃 pSyl 𝐺 ) ↔ ( 𝑃 ∈ ℙ ∧ 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝐻𝑘𝑃 pGrp ( 𝐺s 𝑘 ) ) ↔ 𝐻 = 𝑘 ) ) )
3 2 simp3bi ( 𝐻 ∈ ( 𝑃 pSyl 𝐺 ) → ∀ 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝐻𝑘𝑃 pGrp ( 𝐺s 𝑘 ) ) ↔ 𝐻 = 𝑘 ) )
4 sseq2 ( 𝑘 = 𝐾 → ( 𝐻𝑘𝐻𝐾 ) )
5 oveq2 ( 𝑘 = 𝐾 → ( 𝐺s 𝑘 ) = ( 𝐺s 𝐾 ) )
6 5 1 eqtr4di ( 𝑘 = 𝐾 → ( 𝐺s 𝑘 ) = 𝑆 )
7 6 breq2d ( 𝑘 = 𝐾 → ( 𝑃 pGrp ( 𝐺s 𝑘 ) ↔ 𝑃 pGrp 𝑆 ) )
8 4 7 anbi12d ( 𝑘 = 𝐾 → ( ( 𝐻𝑘𝑃 pGrp ( 𝐺s 𝑘 ) ) ↔ ( 𝐻𝐾𝑃 pGrp 𝑆 ) ) )
9 eqeq2 ( 𝑘 = 𝐾 → ( 𝐻 = 𝑘𝐻 = 𝐾 ) )
10 8 9 bibi12d ( 𝑘 = 𝐾 → ( ( ( 𝐻𝑘𝑃 pGrp ( 𝐺s 𝑘 ) ) ↔ 𝐻 = 𝑘 ) ↔ ( ( 𝐻𝐾𝑃 pGrp 𝑆 ) ↔ 𝐻 = 𝐾 ) ) )
11 10 rspccva ( ( ∀ 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝐻𝑘𝑃 pGrp ( 𝐺s 𝑘 ) ) ↔ 𝐻 = 𝑘 ) ∧ 𝐾 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( 𝐻𝐾𝑃 pGrp 𝑆 ) ↔ 𝐻 = 𝐾 ) )
12 3 11 sylan ( ( 𝐻 ∈ ( 𝑃 pSyl 𝐺 ) ∧ 𝐾 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( 𝐻𝐾𝑃 pGrp 𝑆 ) ↔ 𝐻 = 𝐾 ) )