| Step | Hyp | Ref | Expression | 
						
							| 1 |  | slwispgp.1 | ⊢ 𝑆  =  ( 𝐺  ↾s  𝐾 ) | 
						
							| 2 |  | isslw | ⊢ ( 𝐻  ∈  ( 𝑃  pSyl  𝐺 )  ↔  ( 𝑃  ∈  ℙ  ∧  𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ∀ 𝑘  ∈  ( SubGrp ‘ 𝐺 ) ( ( 𝐻  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) )  ↔  𝐻  =  𝑘 ) ) ) | 
						
							| 3 | 2 | simp3bi | ⊢ ( 𝐻  ∈  ( 𝑃  pSyl  𝐺 )  →  ∀ 𝑘  ∈  ( SubGrp ‘ 𝐺 ) ( ( 𝐻  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) )  ↔  𝐻  =  𝑘 ) ) | 
						
							| 4 |  | sseq2 | ⊢ ( 𝑘  =  𝐾  →  ( 𝐻  ⊆  𝑘  ↔  𝐻  ⊆  𝐾 ) ) | 
						
							| 5 |  | oveq2 | ⊢ ( 𝑘  =  𝐾  →  ( 𝐺  ↾s  𝑘 )  =  ( 𝐺  ↾s  𝐾 ) ) | 
						
							| 6 | 5 1 | eqtr4di | ⊢ ( 𝑘  =  𝐾  →  ( 𝐺  ↾s  𝑘 )  =  𝑆 ) | 
						
							| 7 | 6 | breq2d | ⊢ ( 𝑘  =  𝐾  →  ( 𝑃  pGrp  ( 𝐺  ↾s  𝑘 )  ↔  𝑃  pGrp  𝑆 ) ) | 
						
							| 8 | 4 7 | anbi12d | ⊢ ( 𝑘  =  𝐾  →  ( ( 𝐻  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) )  ↔  ( 𝐻  ⊆  𝐾  ∧  𝑃  pGrp  𝑆 ) ) ) | 
						
							| 9 |  | eqeq2 | ⊢ ( 𝑘  =  𝐾  →  ( 𝐻  =  𝑘  ↔  𝐻  =  𝐾 ) ) | 
						
							| 10 | 8 9 | bibi12d | ⊢ ( 𝑘  =  𝐾  →  ( ( ( 𝐻  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) )  ↔  𝐻  =  𝑘 )  ↔  ( ( 𝐻  ⊆  𝐾  ∧  𝑃  pGrp  𝑆 )  ↔  𝐻  =  𝐾 ) ) ) | 
						
							| 11 | 10 | rspccva | ⊢ ( ( ∀ 𝑘  ∈  ( SubGrp ‘ 𝐺 ) ( ( 𝐻  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) )  ↔  𝐻  =  𝑘 )  ∧  𝐾  ∈  ( SubGrp ‘ 𝐺 ) )  →  ( ( 𝐻  ⊆  𝐾  ∧  𝑃  pGrp  𝑆 )  ↔  𝐻  =  𝐾 ) ) | 
						
							| 12 | 3 11 | sylan | ⊢ ( ( 𝐻  ∈  ( 𝑃  pSyl  𝐺 )  ∧  𝐾  ∈  ( SubGrp ‘ 𝐺 ) )  →  ( ( 𝐻  ⊆  𝐾  ∧  𝑃  pGrp  𝑆 )  ↔  𝐻  =  𝐾 ) ) |