Database
BASIC ALGEBRAIC STRUCTURES
Groups
p-Groups and Sylow groups; Sylow's theorems
slwispgp
Next ⟩
slwpss
Metamath Proof Explorer
Ascii
Unicode
Theorem
slwispgp
Description:
Defining property of a Sylow
P
-subgroup.
(Contributed by
Mario Carneiro
, 16-Jan-2015)
Ref
Expression
Hypothesis
slwispgp.1
⊢
S
=
G
↾
𝑠
K
Assertion
slwispgp
⊢
H
∈
P
pSyl
G
∧
K
∈
SubGrp
⁡
G
→
H
⊆
K
∧
P
pGrp
S
↔
H
=
K
Proof
Step
Hyp
Ref
Expression
1
slwispgp.1
⊢
S
=
G
↾
𝑠
K
2
isslw
⊢
H
∈
P
pSyl
G
↔
P
∈
ℙ
∧
H
∈
SubGrp
⁡
G
∧
∀
k
∈
SubGrp
⁡
G
H
⊆
k
∧
P
pGrp
G
↾
𝑠
k
↔
H
=
k
3
2
simp3bi
⊢
H
∈
P
pSyl
G
→
∀
k
∈
SubGrp
⁡
G
H
⊆
k
∧
P
pGrp
G
↾
𝑠
k
↔
H
=
k
4
sseq2
⊢
k
=
K
→
H
⊆
k
↔
H
⊆
K
5
oveq2
⊢
k
=
K
→
G
↾
𝑠
k
=
G
↾
𝑠
K
6
5
1
eqtr4di
⊢
k
=
K
→
G
↾
𝑠
k
=
S
7
6
breq2d
⊢
k
=
K
→
P
pGrp
G
↾
𝑠
k
↔
P
pGrp
S
8
4
7
anbi12d
⊢
k
=
K
→
H
⊆
k
∧
P
pGrp
G
↾
𝑠
k
↔
H
⊆
K
∧
P
pGrp
S
9
eqeq2
⊢
k
=
K
→
H
=
k
↔
H
=
K
10
8
9
bibi12d
⊢
k
=
K
→
H
⊆
k
∧
P
pGrp
G
↾
𝑠
k
↔
H
=
k
↔
H
⊆
K
∧
P
pGrp
S
↔
H
=
K
11
10
rspccva
⊢
∀
k
∈
SubGrp
⁡
G
H
⊆
k
∧
P
pGrp
G
↾
𝑠
k
↔
H
=
k
∧
K
∈
SubGrp
⁡
G
→
H
⊆
K
∧
P
pGrp
S
↔
H
=
K
12
3
11
sylan
⊢
H
∈
P
pSyl
G
∧
K
∈
SubGrp
⁡
G
→
H
⊆
K
∧
P
pGrp
S
↔
H
=
K