Metamath Proof Explorer


Theorem slwispgp

Description: Defining property of a Sylow P -subgroup. (Contributed by Mario Carneiro, 16-Jan-2015)

Ref Expression
Hypothesis slwispgp.1 S=G𝑠K
Assertion slwispgp HPpSylGKSubGrpGHKPpGrpSH=K

Proof

Step Hyp Ref Expression
1 slwispgp.1 S=G𝑠K
2 isslw HPpSylGPHSubGrpGkSubGrpGHkPpGrpG𝑠kH=k
3 2 simp3bi HPpSylGkSubGrpGHkPpGrpG𝑠kH=k
4 sseq2 k=KHkHK
5 oveq2 k=KG𝑠k=G𝑠K
6 5 1 eqtr4di k=KG𝑠k=S
7 6 breq2d k=KPpGrpG𝑠kPpGrpS
8 4 7 anbi12d k=KHkPpGrpG𝑠kHKPpGrpS
9 eqeq2 k=KH=kH=K
10 8 9 bibi12d k=KHkPpGrpG𝑠kH=kHKPpGrpSH=K
11 10 rspccva kSubGrpGHkPpGrpG𝑠kH=kKSubGrpGHKPpGrpSH=K
12 3 11 sylan HPpSylGKSubGrpGHKPpGrpSH=K