Metamath Proof Explorer


Theorem slwispgp

Description: Defining property of a Sylow P -subgroup. (Contributed by Mario Carneiro, 16-Jan-2015)

Ref Expression
Hypothesis slwispgp.1 S = G 𝑠 K
Assertion slwispgp H P pSyl G K SubGrp G H K P pGrp S H = K

Proof

Step Hyp Ref Expression
1 slwispgp.1 S = G 𝑠 K
2 isslw H P pSyl G P H SubGrp G k SubGrp G H k P pGrp G 𝑠 k H = k
3 2 simp3bi H P pSyl G k SubGrp G H k P pGrp G 𝑠 k H = k
4 sseq2 k = K H k H K
5 oveq2 k = K G 𝑠 k = G 𝑠 K
6 5 1 eqtr4di k = K G 𝑠 k = S
7 6 breq2d k = K P pGrp G 𝑠 k P pGrp S
8 4 7 anbi12d k = K H k P pGrp G 𝑠 k H K P pGrp S
9 eqeq2 k = K H = k H = K
10 8 9 bibi12d k = K H k P pGrp G 𝑠 k H = k H K P pGrp S H = K
11 10 rspccva k SubGrp G H k P pGrp G 𝑠 k H = k K SubGrp G H K P pGrp S H = K
12 3 11 sylan H P pSyl G K SubGrp G H K P pGrp S H = K