Description: Defining property of a Sylow P -subgroup. (Contributed by Mario Carneiro, 16-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | slwispgp.1 | |
|
Assertion | slwispgp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | slwispgp.1 | |
|
2 | isslw | |
|
3 | 2 | simp3bi | |
4 | sseq2 | |
|
5 | oveq2 | |
|
6 | 5 1 | eqtr4di | |
7 | 6 | breq2d | |
8 | 4 7 | anbi12d | |
9 | eqeq2 | |
|
10 | 8 9 | bibi12d | |
11 | 10 | rspccva | |
12 | 3 11 | sylan | |