Metamath Proof Explorer


Definition df-pgp

Description: Define the set of p-groups, which are groups such that every element has a power of p as its order. (Contributed by Mario Carneiro, 15-Jan-2015) (Revised by AV, 5-Oct-2020)

Ref Expression
Assertion df-pgp pGrp=pg|pgGrpxBasegn0odgx=pn

Detailed syntax breakdown

Step Hyp Ref Expression
0 cpgp classpGrp
1 vp setvarp
2 vg setvarg
3 1 cv setvarp
4 cprime class
5 3 4 wcel wffp
6 2 cv setvarg
7 cgrp classGrp
8 6 7 wcel wffgGrp
9 5 8 wa wffpgGrp
10 vx setvarx
11 cbs classBase
12 6 11 cfv classBaseg
13 vn setvarn
14 cn0 class0
15 cod classod
16 6 15 cfv classodg
17 10 cv setvarx
18 17 16 cfv classodgx
19 cexp class^
20 13 cv setvarn
21 3 20 19 co classpn
22 18 21 wceq wffodgx=pn
23 22 13 14 wrex wffn0odgx=pn
24 23 10 12 wral wffxBasegn0odgx=pn
25 9 24 wa wffpgGrpxBasegn0odgx=pn
26 25 1 2 copab classpg|pgGrpxBasegn0odgx=pn
27 0 26 wceq wffpGrp=pg|pgGrpxBasegn0odgx=pn