Metamath Proof Explorer


Definition df-slw

Description: Define the set of Sylow p-subgroups of a group g . A Sylow p-subgroup is a p-group that is not a subgroup of any other p-groups in g . (Contributed by Mario Carneiro, 16-Jan-2015)

Ref Expression
Assertion df-slw pSyl=p,gGrphSubGrpg|kSubGrpghkppGrpg𝑠kh=k

Detailed syntax breakdown

Step Hyp Ref Expression
0 cslw classpSyl
1 vp setvarp
2 cprime class
3 vg setvarg
4 cgrp classGrp
5 vh setvarh
6 csubg classSubGrp
7 3 cv setvarg
8 7 6 cfv classSubGrpg
9 vk setvark
10 5 cv setvarh
11 9 cv setvark
12 10 11 wss wffhk
13 1 cv setvarp
14 cpgp classpGrp
15 cress class𝑠
16 7 11 15 co classg𝑠k
17 13 16 14 wbr wffppGrpg𝑠k
18 12 17 wa wffhkppGrpg𝑠k
19 10 11 wceq wffh=k
20 18 19 wb wffhkppGrpg𝑠kh=k
21 20 9 8 wral wffkSubGrpghkppGrpg𝑠kh=k
22 21 5 8 crab classhSubGrpg|kSubGrpghkppGrpg𝑠kh=k
23 1 3 2 4 22 cmpo classp,gGrphSubGrpg|kSubGrpghkppGrpg𝑠kh=k
24 0 23 wceq wffpSyl=p,gGrphSubGrpg|kSubGrpghkppGrpg𝑠kh=k