| Step |
Hyp |
Ref |
Expression |
| 1 |
|
odval.1 |
|
| 2 |
|
odval.2 |
|
| 3 |
|
odval.3 |
|
| 4 |
|
odval.4 |
|
| 5 |
|
fveq2 |
|
| 6 |
5 1
|
eqtr4di |
|
| 7 |
|
fveq2 |
|
| 8 |
7 2
|
eqtr4di |
|
| 9 |
8
|
oveqd |
|
| 10 |
|
fveq2 |
|
| 11 |
10 3
|
eqtr4di |
|
| 12 |
9 11
|
eqeq12d |
|
| 13 |
12
|
rabbidv |
|
| 14 |
13
|
csbeq1d |
|
| 15 |
6 14
|
mpteq12dv |
|
| 16 |
|
df-od |
|
| 17 |
1
|
fvexi |
|
| 18 |
|
nn0ex |
|
| 19 |
|
nnex |
|
| 20 |
19
|
rabex |
|
| 21 |
|
eqeq1 |
|
| 22 |
|
infeq1 |
|
| 23 |
21 22
|
ifbieq2d |
|
| 24 |
20 23
|
csbie |
|
| 25 |
|
0nn0 |
|
| 26 |
25
|
a1i |
|
| 27 |
|
df-ne |
|
| 28 |
|
ssrab2 |
|
| 29 |
|
nnuz |
|
| 30 |
28 29
|
sseqtri |
|
| 31 |
|
infssuzcl |
|
| 32 |
30 31
|
mpan |
|
| 33 |
28 32
|
sselid |
|
| 34 |
27 33
|
sylbir |
|
| 35 |
34
|
nnnn0d |
|
| 36 |
35
|
adantl |
|
| 37 |
26 36
|
ifclda |
|
| 38 |
37
|
mptru |
|
| 39 |
24 38
|
eqeltri |
|
| 40 |
39
|
rgenw |
|
| 41 |
17 18 40
|
mptexw |
|
| 42 |
15 16 41
|
fvmpt |
|
| 43 |
|
fvprc |
|
| 44 |
|
fvprc |
|
| 45 |
1 44
|
eqtrid |
|
| 46 |
45
|
mpteq1d |
|
| 47 |
|
mpt0 |
|
| 48 |
46 47
|
eqtrdi |
|
| 49 |
43 48
|
eqtr4d |
|
| 50 |
42 49
|
pm2.61i |
|
| 51 |
4 50
|
eqtri |
|