Description: Define the set of Sylow p-subgroups of a group g . A Sylow p-subgroup is a p-group that is not a subgroup of any other p-groups in g . (Contributed by Mario Carneiro, 16-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | df-slw | |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cslw | |
|
1 | vp | |
|
2 | cprime | |
|
3 | vg | |
|
4 | cgrp | |
|
5 | vh | |
|
6 | csubg | |
|
7 | 3 | cv | |
8 | 7 6 | cfv | |
9 | vk | |
|
10 | 5 | cv | |
11 | 9 | cv | |
12 | 10 11 | wss | |
13 | 1 | cv | |
14 | cpgp | |
|
15 | cress | |
|
16 | 7 11 15 | co | |
17 | 13 16 14 | wbr | |
18 | 12 17 | wa | |
19 | 10 11 | wceq | |
20 | 18 19 | wb | |
21 | 20 9 8 | wral | |
22 | 21 5 8 | crab | |
23 | 1 3 2 4 22 | cmpo | |
24 | 0 23 | wceq | |