Description: A Sylow subgroup that is contained in a larger subgroup is also Sylow with respect to the subgroup. (The converse need not be true.) (Contributed by Mario Carneiro, 19-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | subgslw.1 | |
|
Assertion | subgslw | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subgslw.1 | |
|
2 | slwprm | |
|
3 | 2 | 3ad2ant2 | |
4 | slwsubg | |
|
5 | 4 | 3ad2ant2 | |
6 | simp3 | |
|
7 | 1 | subsubg | |
8 | 7 | 3ad2ant1 | |
9 | 5 6 8 | mpbir2and | |
10 | 1 | oveq1i | |
11 | simpl1 | |
|
12 | 1 | subsubg | |
13 | 12 | 3ad2ant1 | |
14 | 13 | simplbda | |
15 | ressabs | |
|
16 | 11 14 15 | syl2anc | |
17 | 10 16 | eqtrid | |
18 | 17 | breq2d | |
19 | 18 | anbi2d | |
20 | simpl2 | |
|
21 | 13 | simprbda | |
22 | eqid | |
|
23 | 22 | slwispgp | |
24 | 20 21 23 | syl2anc | |
25 | 19 24 | bitrd | |
26 | 25 | ralrimiva | |
27 | isslw | |
|
28 | 3 9 26 27 | syl3anbrc | |