Metamath Proof Explorer


Theorem subgslw

Description: A Sylow subgroup that is contained in a larger subgroup is also Sylow with respect to the subgroup. (The converse need not be true.) (Contributed by Mario Carneiro, 19-Jan-2015)

Ref Expression
Hypothesis subgslw.1 H=G𝑠S
Assertion subgslw SSubGrpGKPpSylGKSKPpSylH

Proof

Step Hyp Ref Expression
1 subgslw.1 H=G𝑠S
2 slwprm KPpSylGP
3 2 3ad2ant2 SSubGrpGKPpSylGKSP
4 slwsubg KPpSylGKSubGrpG
5 4 3ad2ant2 SSubGrpGKPpSylGKSKSubGrpG
6 simp3 SSubGrpGKPpSylGKSKS
7 1 subsubg SSubGrpGKSubGrpHKSubGrpGKS
8 7 3ad2ant1 SSubGrpGKPpSylGKSKSubGrpHKSubGrpGKS
9 5 6 8 mpbir2and SSubGrpGKPpSylGKSKSubGrpH
10 1 oveq1i H𝑠x=G𝑠S𝑠x
11 simpl1 SSubGrpGKPpSylGKSxSubGrpHSSubGrpG
12 1 subsubg SSubGrpGxSubGrpHxSubGrpGxS
13 12 3ad2ant1 SSubGrpGKPpSylGKSxSubGrpHxSubGrpGxS
14 13 simplbda SSubGrpGKPpSylGKSxSubGrpHxS
15 ressabs SSubGrpGxSG𝑠S𝑠x=G𝑠x
16 11 14 15 syl2anc SSubGrpGKPpSylGKSxSubGrpHG𝑠S𝑠x=G𝑠x
17 10 16 eqtrid SSubGrpGKPpSylGKSxSubGrpHH𝑠x=G𝑠x
18 17 breq2d SSubGrpGKPpSylGKSxSubGrpHPpGrpH𝑠xPpGrpG𝑠x
19 18 anbi2d SSubGrpGKPpSylGKSxSubGrpHKxPpGrpH𝑠xKxPpGrpG𝑠x
20 simpl2 SSubGrpGKPpSylGKSxSubGrpHKPpSylG
21 13 simprbda SSubGrpGKPpSylGKSxSubGrpHxSubGrpG
22 eqid G𝑠x=G𝑠x
23 22 slwispgp KPpSylGxSubGrpGKxPpGrpG𝑠xK=x
24 20 21 23 syl2anc SSubGrpGKPpSylGKSxSubGrpHKxPpGrpG𝑠xK=x
25 19 24 bitrd SSubGrpGKPpSylGKSxSubGrpHKxPpGrpH𝑠xK=x
26 25 ralrimiva SSubGrpGKPpSylGKSxSubGrpHKxPpGrpH𝑠xK=x
27 isslw KPpSylHPKSubGrpHxSubGrpHKxPpGrpH𝑠xK=x
28 3 9 26 27 syl3anbrc SSubGrpGKPpSylGKSKPpSylH