| Step | Hyp | Ref | Expression | 
						
							| 1 |  | subgslw.1 |  |-  H = ( G |`s S ) | 
						
							| 2 |  | slwprm |  |-  ( K e. ( P pSyl G ) -> P e. Prime ) | 
						
							| 3 | 2 | 3ad2ant2 |  |-  ( ( S e. ( SubGrp ` G ) /\ K e. ( P pSyl G ) /\ K C_ S ) -> P e. Prime ) | 
						
							| 4 |  | slwsubg |  |-  ( K e. ( P pSyl G ) -> K e. ( SubGrp ` G ) ) | 
						
							| 5 | 4 | 3ad2ant2 |  |-  ( ( S e. ( SubGrp ` G ) /\ K e. ( P pSyl G ) /\ K C_ S ) -> K e. ( SubGrp ` G ) ) | 
						
							| 6 |  | simp3 |  |-  ( ( S e. ( SubGrp ` G ) /\ K e. ( P pSyl G ) /\ K C_ S ) -> K C_ S ) | 
						
							| 7 | 1 | subsubg |  |-  ( S e. ( SubGrp ` G ) -> ( K e. ( SubGrp ` H ) <-> ( K e. ( SubGrp ` G ) /\ K C_ S ) ) ) | 
						
							| 8 | 7 | 3ad2ant1 |  |-  ( ( S e. ( SubGrp ` G ) /\ K e. ( P pSyl G ) /\ K C_ S ) -> ( K e. ( SubGrp ` H ) <-> ( K e. ( SubGrp ` G ) /\ K C_ S ) ) ) | 
						
							| 9 | 5 6 8 | mpbir2and |  |-  ( ( S e. ( SubGrp ` G ) /\ K e. ( P pSyl G ) /\ K C_ S ) -> K e. ( SubGrp ` H ) ) | 
						
							| 10 | 1 | oveq1i |  |-  ( H |`s x ) = ( ( G |`s S ) |`s x ) | 
						
							| 11 |  | simpl1 |  |-  ( ( ( S e. ( SubGrp ` G ) /\ K e. ( P pSyl G ) /\ K C_ S ) /\ x e. ( SubGrp ` H ) ) -> S e. ( SubGrp ` G ) ) | 
						
							| 12 | 1 | subsubg |  |-  ( S e. ( SubGrp ` G ) -> ( x e. ( SubGrp ` H ) <-> ( x e. ( SubGrp ` G ) /\ x C_ S ) ) ) | 
						
							| 13 | 12 | 3ad2ant1 |  |-  ( ( S e. ( SubGrp ` G ) /\ K e. ( P pSyl G ) /\ K C_ S ) -> ( x e. ( SubGrp ` H ) <-> ( x e. ( SubGrp ` G ) /\ x C_ S ) ) ) | 
						
							| 14 | 13 | simplbda |  |-  ( ( ( S e. ( SubGrp ` G ) /\ K e. ( P pSyl G ) /\ K C_ S ) /\ x e. ( SubGrp ` H ) ) -> x C_ S ) | 
						
							| 15 |  | ressabs |  |-  ( ( S e. ( SubGrp ` G ) /\ x C_ S ) -> ( ( G |`s S ) |`s x ) = ( G |`s x ) ) | 
						
							| 16 | 11 14 15 | syl2anc |  |-  ( ( ( S e. ( SubGrp ` G ) /\ K e. ( P pSyl G ) /\ K C_ S ) /\ x e. ( SubGrp ` H ) ) -> ( ( G |`s S ) |`s x ) = ( G |`s x ) ) | 
						
							| 17 | 10 16 | eqtrid |  |-  ( ( ( S e. ( SubGrp ` G ) /\ K e. ( P pSyl G ) /\ K C_ S ) /\ x e. ( SubGrp ` H ) ) -> ( H |`s x ) = ( G |`s x ) ) | 
						
							| 18 | 17 | breq2d |  |-  ( ( ( S e. ( SubGrp ` G ) /\ K e. ( P pSyl G ) /\ K C_ S ) /\ x e. ( SubGrp ` H ) ) -> ( P pGrp ( H |`s x ) <-> P pGrp ( G |`s x ) ) ) | 
						
							| 19 | 18 | anbi2d |  |-  ( ( ( S e. ( SubGrp ` G ) /\ K e. ( P pSyl G ) /\ K C_ S ) /\ x e. ( SubGrp ` H ) ) -> ( ( K C_ x /\ P pGrp ( H |`s x ) ) <-> ( K C_ x /\ P pGrp ( G |`s x ) ) ) ) | 
						
							| 20 |  | simpl2 |  |-  ( ( ( S e. ( SubGrp ` G ) /\ K e. ( P pSyl G ) /\ K C_ S ) /\ x e. ( SubGrp ` H ) ) -> K e. ( P pSyl G ) ) | 
						
							| 21 | 13 | simprbda |  |-  ( ( ( S e. ( SubGrp ` G ) /\ K e. ( P pSyl G ) /\ K C_ S ) /\ x e. ( SubGrp ` H ) ) -> x e. ( SubGrp ` G ) ) | 
						
							| 22 |  | eqid |  |-  ( G |`s x ) = ( G |`s x ) | 
						
							| 23 | 22 | slwispgp |  |-  ( ( K e. ( P pSyl G ) /\ x e. ( SubGrp ` G ) ) -> ( ( K C_ x /\ P pGrp ( G |`s x ) ) <-> K = x ) ) | 
						
							| 24 | 20 21 23 | syl2anc |  |-  ( ( ( S e. ( SubGrp ` G ) /\ K e. ( P pSyl G ) /\ K C_ S ) /\ x e. ( SubGrp ` H ) ) -> ( ( K C_ x /\ P pGrp ( G |`s x ) ) <-> K = x ) ) | 
						
							| 25 | 19 24 | bitrd |  |-  ( ( ( S e. ( SubGrp ` G ) /\ K e. ( P pSyl G ) /\ K C_ S ) /\ x e. ( SubGrp ` H ) ) -> ( ( K C_ x /\ P pGrp ( H |`s x ) ) <-> K = x ) ) | 
						
							| 26 | 25 | ralrimiva |  |-  ( ( S e. ( SubGrp ` G ) /\ K e. ( P pSyl G ) /\ K C_ S ) -> A. x e. ( SubGrp ` H ) ( ( K C_ x /\ P pGrp ( H |`s x ) ) <-> K = x ) ) | 
						
							| 27 |  | isslw |  |-  ( K e. ( P pSyl H ) <-> ( P e. Prime /\ K e. ( SubGrp ` H ) /\ A. x e. ( SubGrp ` H ) ( ( K C_ x /\ P pGrp ( H |`s x ) ) <-> K = x ) ) ) | 
						
							| 28 | 3 9 26 27 | syl3anbrc |  |-  ( ( S e. ( SubGrp ` G ) /\ K e. ( P pSyl G ) /\ K C_ S ) -> K e. ( P pSyl H ) ) |