| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sylow2a.x |  |-  X = ( Base ` G ) | 
						
							| 2 |  | sylow2a.m |  |-  ( ph -> .(+) e. ( G GrpAct Y ) ) | 
						
							| 3 |  | sylow2a.p |  |-  ( ph -> P pGrp G ) | 
						
							| 4 |  | sylow2a.f |  |-  ( ph -> X e. Fin ) | 
						
							| 5 |  | sylow2a.y |  |-  ( ph -> Y e. Fin ) | 
						
							| 6 |  | sylow2a.z |  |-  Z = { u e. Y | A. h e. X ( h .(+) u ) = u } | 
						
							| 7 |  | sylow2a.r |  |-  .~ = { <. x , y >. | ( { x , y } C_ Y /\ E. g e. X ( g .(+) x ) = y ) } | 
						
							| 8 |  | vex |  |-  w e. _V | 
						
							| 9 |  | simpr |  |-  ( ( ph /\ A e. Z ) -> A e. Z ) | 
						
							| 10 |  | elecg |  |-  ( ( w e. _V /\ A e. Z ) -> ( w e. [ A ] .~ <-> A .~ w ) ) | 
						
							| 11 | 8 9 10 | sylancr |  |-  ( ( ph /\ A e. Z ) -> ( w e. [ A ] .~ <-> A .~ w ) ) | 
						
							| 12 | 7 | gaorb |  |-  ( A .~ w <-> ( A e. Y /\ w e. Y /\ E. k e. X ( k .(+) A ) = w ) ) | 
						
							| 13 | 12 | simp3bi |  |-  ( A .~ w -> E. k e. X ( k .(+) A ) = w ) | 
						
							| 14 |  | oveq2 |  |-  ( u = A -> ( h .(+) u ) = ( h .(+) A ) ) | 
						
							| 15 |  | id |  |-  ( u = A -> u = A ) | 
						
							| 16 | 14 15 | eqeq12d |  |-  ( u = A -> ( ( h .(+) u ) = u <-> ( h .(+) A ) = A ) ) | 
						
							| 17 | 16 | ralbidv |  |-  ( u = A -> ( A. h e. X ( h .(+) u ) = u <-> A. h e. X ( h .(+) A ) = A ) ) | 
						
							| 18 | 17 6 | elrab2 |  |-  ( A e. Z <-> ( A e. Y /\ A. h e. X ( h .(+) A ) = A ) ) | 
						
							| 19 | 9 18 | sylib |  |-  ( ( ph /\ A e. Z ) -> ( A e. Y /\ A. h e. X ( h .(+) A ) = A ) ) | 
						
							| 20 | 19 | simprd |  |-  ( ( ph /\ A e. Z ) -> A. h e. X ( h .(+) A ) = A ) | 
						
							| 21 |  | oveq1 |  |-  ( h = k -> ( h .(+) A ) = ( k .(+) A ) ) | 
						
							| 22 | 21 | eqeq1d |  |-  ( h = k -> ( ( h .(+) A ) = A <-> ( k .(+) A ) = A ) ) | 
						
							| 23 | 22 | rspccva |  |-  ( ( A. h e. X ( h .(+) A ) = A /\ k e. X ) -> ( k .(+) A ) = A ) | 
						
							| 24 | 20 23 | sylan |  |-  ( ( ( ph /\ A e. Z ) /\ k e. X ) -> ( k .(+) A ) = A ) | 
						
							| 25 |  | eqeq1 |  |-  ( ( k .(+) A ) = w -> ( ( k .(+) A ) = A <-> w = A ) ) | 
						
							| 26 | 24 25 | syl5ibcom |  |-  ( ( ( ph /\ A e. Z ) /\ k e. X ) -> ( ( k .(+) A ) = w -> w = A ) ) | 
						
							| 27 | 26 | rexlimdva |  |-  ( ( ph /\ A e. Z ) -> ( E. k e. X ( k .(+) A ) = w -> w = A ) ) | 
						
							| 28 | 13 27 | syl5 |  |-  ( ( ph /\ A e. Z ) -> ( A .~ w -> w = A ) ) | 
						
							| 29 | 11 28 | sylbid |  |-  ( ( ph /\ A e. Z ) -> ( w e. [ A ] .~ -> w = A ) ) | 
						
							| 30 |  | velsn |  |-  ( w e. { A } <-> w = A ) | 
						
							| 31 | 29 30 | imbitrrdi |  |-  ( ( ph /\ A e. Z ) -> ( w e. [ A ] .~ -> w e. { A } ) ) | 
						
							| 32 | 31 | ssrdv |  |-  ( ( ph /\ A e. Z ) -> [ A ] .~ C_ { A } ) | 
						
							| 33 | 7 1 | gaorber |  |-  ( .(+) e. ( G GrpAct Y ) -> .~ Er Y ) | 
						
							| 34 | 2 33 | syl |  |-  ( ph -> .~ Er Y ) | 
						
							| 35 | 34 | adantr |  |-  ( ( ph /\ A e. Z ) -> .~ Er Y ) | 
						
							| 36 | 19 | simpld |  |-  ( ( ph /\ A e. Z ) -> A e. Y ) | 
						
							| 37 | 35 36 | erref |  |-  ( ( ph /\ A e. Z ) -> A .~ A ) | 
						
							| 38 |  | elecg |  |-  ( ( A e. Z /\ A e. Z ) -> ( A e. [ A ] .~ <-> A .~ A ) ) | 
						
							| 39 | 9 38 | sylancom |  |-  ( ( ph /\ A e. Z ) -> ( A e. [ A ] .~ <-> A .~ A ) ) | 
						
							| 40 | 37 39 | mpbird |  |-  ( ( ph /\ A e. Z ) -> A e. [ A ] .~ ) | 
						
							| 41 | 40 | snssd |  |-  ( ( ph /\ A e. Z ) -> { A } C_ [ A ] .~ ) | 
						
							| 42 | 32 41 | eqssd |  |-  ( ( ph /\ A e. Z ) -> [ A ] .~ = { A } ) |