| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sylow2a.x |  |-  X = ( Base ` G ) | 
						
							| 2 |  | sylow2a.m |  |-  ( ph -> .(+) e. ( G GrpAct Y ) ) | 
						
							| 3 |  | sylow2a.p |  |-  ( ph -> P pGrp G ) | 
						
							| 4 |  | sylow2a.f |  |-  ( ph -> X e. Fin ) | 
						
							| 5 |  | sylow2a.y |  |-  ( ph -> Y e. Fin ) | 
						
							| 6 |  | sylow2a.z |  |-  Z = { u e. Y | A. h e. X ( h .(+) u ) = u } | 
						
							| 7 |  | sylow2a.r |  |-  .~ = { <. x , y >. | ( { x , y } C_ Y /\ E. g e. X ( g .(+) x ) = y ) } | 
						
							| 8 |  | pwfi |  |-  ( Y e. Fin <-> ~P Y e. Fin ) | 
						
							| 9 | 5 8 | sylib |  |-  ( ph -> ~P Y e. Fin ) | 
						
							| 10 | 7 1 | gaorber |  |-  ( .(+) e. ( G GrpAct Y ) -> .~ Er Y ) | 
						
							| 11 | 2 10 | syl |  |-  ( ph -> .~ Er Y ) | 
						
							| 12 | 11 | qsss |  |-  ( ph -> ( Y /. .~ ) C_ ~P Y ) | 
						
							| 13 | 9 12 | ssfid |  |-  ( ph -> ( Y /. .~ ) e. Fin ) | 
						
							| 14 |  | diffi |  |-  ( ( Y /. .~ ) e. Fin -> ( ( Y /. .~ ) \ ~P Z ) e. Fin ) | 
						
							| 15 | 13 14 | syl |  |-  ( ph -> ( ( Y /. .~ ) \ ~P Z ) e. Fin ) | 
						
							| 16 |  | gagrp |  |-  ( .(+) e. ( G GrpAct Y ) -> G e. Grp ) | 
						
							| 17 | 2 16 | syl |  |-  ( ph -> G e. Grp ) | 
						
							| 18 | 1 | pgpfi |  |-  ( ( G e. Grp /\ X e. Fin ) -> ( P pGrp G <-> ( P e. Prime /\ E. n e. NN0 ( # ` X ) = ( P ^ n ) ) ) ) | 
						
							| 19 | 17 4 18 | syl2anc |  |-  ( ph -> ( P pGrp G <-> ( P e. Prime /\ E. n e. NN0 ( # ` X ) = ( P ^ n ) ) ) ) | 
						
							| 20 | 3 19 | mpbid |  |-  ( ph -> ( P e. Prime /\ E. n e. NN0 ( # ` X ) = ( P ^ n ) ) ) | 
						
							| 21 | 20 | simpld |  |-  ( ph -> P e. Prime ) | 
						
							| 22 |  | prmz |  |-  ( P e. Prime -> P e. ZZ ) | 
						
							| 23 | 21 22 | syl |  |-  ( ph -> P e. ZZ ) | 
						
							| 24 |  | eldifi |  |-  ( z e. ( ( Y /. .~ ) \ ~P Z ) -> z e. ( Y /. .~ ) ) | 
						
							| 25 | 5 | adantr |  |-  ( ( ph /\ z e. ( Y /. .~ ) ) -> Y e. Fin ) | 
						
							| 26 | 12 | sselda |  |-  ( ( ph /\ z e. ( Y /. .~ ) ) -> z e. ~P Y ) | 
						
							| 27 | 26 | elpwid |  |-  ( ( ph /\ z e. ( Y /. .~ ) ) -> z C_ Y ) | 
						
							| 28 | 25 27 | ssfid |  |-  ( ( ph /\ z e. ( Y /. .~ ) ) -> z e. Fin ) | 
						
							| 29 | 24 28 | sylan2 |  |-  ( ( ph /\ z e. ( ( Y /. .~ ) \ ~P Z ) ) -> z e. Fin ) | 
						
							| 30 |  | hashcl |  |-  ( z e. Fin -> ( # ` z ) e. NN0 ) | 
						
							| 31 | 29 30 | syl |  |-  ( ( ph /\ z e. ( ( Y /. .~ ) \ ~P Z ) ) -> ( # ` z ) e. NN0 ) | 
						
							| 32 | 31 | nn0zd |  |-  ( ( ph /\ z e. ( ( Y /. .~ ) \ ~P Z ) ) -> ( # ` z ) e. ZZ ) | 
						
							| 33 |  | eldif |  |-  ( z e. ( ( Y /. .~ ) \ ~P Z ) <-> ( z e. ( Y /. .~ ) /\ -. z e. ~P Z ) ) | 
						
							| 34 |  | eqid |  |-  ( Y /. .~ ) = ( Y /. .~ ) | 
						
							| 35 |  | sseq1 |  |-  ( [ w ] .~ = z -> ( [ w ] .~ C_ Z <-> z C_ Z ) ) | 
						
							| 36 |  | velpw |  |-  ( z e. ~P Z <-> z C_ Z ) | 
						
							| 37 | 35 36 | bitr4di |  |-  ( [ w ] .~ = z -> ( [ w ] .~ C_ Z <-> z e. ~P Z ) ) | 
						
							| 38 | 37 | notbid |  |-  ( [ w ] .~ = z -> ( -. [ w ] .~ C_ Z <-> -. z e. ~P Z ) ) | 
						
							| 39 |  | fveq2 |  |-  ( [ w ] .~ = z -> ( # ` [ w ] .~ ) = ( # ` z ) ) | 
						
							| 40 | 39 | breq2d |  |-  ( [ w ] .~ = z -> ( P || ( # ` [ w ] .~ ) <-> P || ( # ` z ) ) ) | 
						
							| 41 | 38 40 | imbi12d |  |-  ( [ w ] .~ = z -> ( ( -. [ w ] .~ C_ Z -> P || ( # ` [ w ] .~ ) ) <-> ( -. z e. ~P Z -> P || ( # ` z ) ) ) ) | 
						
							| 42 | 21 | adantr |  |-  ( ( ph /\ w e. Y ) -> P e. Prime ) | 
						
							| 43 | 11 | adantr |  |-  ( ( ph /\ w e. Y ) -> .~ Er Y ) | 
						
							| 44 |  | simpr |  |-  ( ( ph /\ w e. Y ) -> w e. Y ) | 
						
							| 45 | 43 44 | erref |  |-  ( ( ph /\ w e. Y ) -> w .~ w ) | 
						
							| 46 |  | vex |  |-  w e. _V | 
						
							| 47 | 46 46 | elec |  |-  ( w e. [ w ] .~ <-> w .~ w ) | 
						
							| 48 | 45 47 | sylibr |  |-  ( ( ph /\ w e. Y ) -> w e. [ w ] .~ ) | 
						
							| 49 | 48 | ne0d |  |-  ( ( ph /\ w e. Y ) -> [ w ] .~ =/= (/) ) | 
						
							| 50 | 11 | ecss |  |-  ( ph -> [ w ] .~ C_ Y ) | 
						
							| 51 | 5 50 | ssfid |  |-  ( ph -> [ w ] .~ e. Fin ) | 
						
							| 52 | 51 | adantr |  |-  ( ( ph /\ w e. Y ) -> [ w ] .~ e. Fin ) | 
						
							| 53 |  | hashnncl |  |-  ( [ w ] .~ e. Fin -> ( ( # ` [ w ] .~ ) e. NN <-> [ w ] .~ =/= (/) ) ) | 
						
							| 54 | 52 53 | syl |  |-  ( ( ph /\ w e. Y ) -> ( ( # ` [ w ] .~ ) e. NN <-> [ w ] .~ =/= (/) ) ) | 
						
							| 55 | 49 54 | mpbird |  |-  ( ( ph /\ w e. Y ) -> ( # ` [ w ] .~ ) e. NN ) | 
						
							| 56 |  | pceq0 |  |-  ( ( P e. Prime /\ ( # ` [ w ] .~ ) e. NN ) -> ( ( P pCnt ( # ` [ w ] .~ ) ) = 0 <-> -. P || ( # ` [ w ] .~ ) ) ) | 
						
							| 57 | 42 55 56 | syl2anc |  |-  ( ( ph /\ w e. Y ) -> ( ( P pCnt ( # ` [ w ] .~ ) ) = 0 <-> -. P || ( # ` [ w ] .~ ) ) ) | 
						
							| 58 |  | oveq2 |  |-  ( ( P pCnt ( # ` [ w ] .~ ) ) = 0 -> ( P ^ ( P pCnt ( # ` [ w ] .~ ) ) ) = ( P ^ 0 ) ) | 
						
							| 59 |  | hashcl |  |-  ( [ w ] .~ e. Fin -> ( # ` [ w ] .~ ) e. NN0 ) | 
						
							| 60 | 51 59 | syl |  |-  ( ph -> ( # ` [ w ] .~ ) e. NN0 ) | 
						
							| 61 | 60 | nn0zd |  |-  ( ph -> ( # ` [ w ] .~ ) e. ZZ ) | 
						
							| 62 |  | ssrab2 |  |-  { v e. X | ( v .(+) w ) = w } C_ X | 
						
							| 63 |  | ssfi |  |-  ( ( X e. Fin /\ { v e. X | ( v .(+) w ) = w } C_ X ) -> { v e. X | ( v .(+) w ) = w } e. Fin ) | 
						
							| 64 | 4 62 63 | sylancl |  |-  ( ph -> { v e. X | ( v .(+) w ) = w } e. Fin ) | 
						
							| 65 |  | hashcl |  |-  ( { v e. X | ( v .(+) w ) = w } e. Fin -> ( # ` { v e. X | ( v .(+) w ) = w } ) e. NN0 ) | 
						
							| 66 | 64 65 | syl |  |-  ( ph -> ( # ` { v e. X | ( v .(+) w ) = w } ) e. NN0 ) | 
						
							| 67 | 66 | nn0zd |  |-  ( ph -> ( # ` { v e. X | ( v .(+) w ) = w } ) e. ZZ ) | 
						
							| 68 |  | dvdsmul1 |  |-  ( ( ( # ` [ w ] .~ ) e. ZZ /\ ( # ` { v e. X | ( v .(+) w ) = w } ) e. ZZ ) -> ( # ` [ w ] .~ ) || ( ( # ` [ w ] .~ ) x. ( # ` { v e. X | ( v .(+) w ) = w } ) ) ) | 
						
							| 69 | 61 67 68 | syl2anc |  |-  ( ph -> ( # ` [ w ] .~ ) || ( ( # ` [ w ] .~ ) x. ( # ` { v e. X | ( v .(+) w ) = w } ) ) ) | 
						
							| 70 | 69 | adantr |  |-  ( ( ph /\ w e. Y ) -> ( # ` [ w ] .~ ) || ( ( # ` [ w ] .~ ) x. ( # ` { v e. X | ( v .(+) w ) = w } ) ) ) | 
						
							| 71 | 2 | adantr |  |-  ( ( ph /\ w e. Y ) -> .(+) e. ( G GrpAct Y ) ) | 
						
							| 72 | 4 | adantr |  |-  ( ( ph /\ w e. Y ) -> X e. Fin ) | 
						
							| 73 |  | eqid |  |-  { v e. X | ( v .(+) w ) = w } = { v e. X | ( v .(+) w ) = w } | 
						
							| 74 |  | eqid |  |-  ( G ~QG { v e. X | ( v .(+) w ) = w } ) = ( G ~QG { v e. X | ( v .(+) w ) = w } ) | 
						
							| 75 | 1 73 74 7 | orbsta2 |  |-  ( ( ( .(+) e. ( G GrpAct Y ) /\ w e. Y ) /\ X e. Fin ) -> ( # ` X ) = ( ( # ` [ w ] .~ ) x. ( # ` { v e. X | ( v .(+) w ) = w } ) ) ) | 
						
							| 76 | 71 44 72 75 | syl21anc |  |-  ( ( ph /\ w e. Y ) -> ( # ` X ) = ( ( # ` [ w ] .~ ) x. ( # ` { v e. X | ( v .(+) w ) = w } ) ) ) | 
						
							| 77 | 70 76 | breqtrrd |  |-  ( ( ph /\ w e. Y ) -> ( # ` [ w ] .~ ) || ( # ` X ) ) | 
						
							| 78 | 20 | simprd |  |-  ( ph -> E. n e. NN0 ( # ` X ) = ( P ^ n ) ) | 
						
							| 79 | 78 | adantr |  |-  ( ( ph /\ w e. Y ) -> E. n e. NN0 ( # ` X ) = ( P ^ n ) ) | 
						
							| 80 |  | breq2 |  |-  ( ( # ` X ) = ( P ^ n ) -> ( ( # ` [ w ] .~ ) || ( # ` X ) <-> ( # ` [ w ] .~ ) || ( P ^ n ) ) ) | 
						
							| 81 | 80 | biimpcd |  |-  ( ( # ` [ w ] .~ ) || ( # ` X ) -> ( ( # ` X ) = ( P ^ n ) -> ( # ` [ w ] .~ ) || ( P ^ n ) ) ) | 
						
							| 82 | 81 | reximdv |  |-  ( ( # ` [ w ] .~ ) || ( # ` X ) -> ( E. n e. NN0 ( # ` X ) = ( P ^ n ) -> E. n e. NN0 ( # ` [ w ] .~ ) || ( P ^ n ) ) ) | 
						
							| 83 | 77 79 82 | sylc |  |-  ( ( ph /\ w e. Y ) -> E. n e. NN0 ( # ` [ w ] .~ ) || ( P ^ n ) ) | 
						
							| 84 |  | pcprmpw2 |  |-  ( ( P e. Prime /\ ( # ` [ w ] .~ ) e. NN ) -> ( E. n e. NN0 ( # ` [ w ] .~ ) || ( P ^ n ) <-> ( # ` [ w ] .~ ) = ( P ^ ( P pCnt ( # ` [ w ] .~ ) ) ) ) ) | 
						
							| 85 | 42 55 84 | syl2anc |  |-  ( ( ph /\ w e. Y ) -> ( E. n e. NN0 ( # ` [ w ] .~ ) || ( P ^ n ) <-> ( # ` [ w ] .~ ) = ( P ^ ( P pCnt ( # ` [ w ] .~ ) ) ) ) ) | 
						
							| 86 | 83 85 | mpbid |  |-  ( ( ph /\ w e. Y ) -> ( # ` [ w ] .~ ) = ( P ^ ( P pCnt ( # ` [ w ] .~ ) ) ) ) | 
						
							| 87 | 86 | eqcomd |  |-  ( ( ph /\ w e. Y ) -> ( P ^ ( P pCnt ( # ` [ w ] .~ ) ) ) = ( # ` [ w ] .~ ) ) | 
						
							| 88 | 23 | adantr |  |-  ( ( ph /\ w e. Y ) -> P e. ZZ ) | 
						
							| 89 | 88 | zcnd |  |-  ( ( ph /\ w e. Y ) -> P e. CC ) | 
						
							| 90 | 89 | exp0d |  |-  ( ( ph /\ w e. Y ) -> ( P ^ 0 ) = 1 ) | 
						
							| 91 |  | hash1 |  |-  ( # ` 1o ) = 1 | 
						
							| 92 | 90 91 | eqtr4di |  |-  ( ( ph /\ w e. Y ) -> ( P ^ 0 ) = ( # ` 1o ) ) | 
						
							| 93 | 87 92 | eqeq12d |  |-  ( ( ph /\ w e. Y ) -> ( ( P ^ ( P pCnt ( # ` [ w ] .~ ) ) ) = ( P ^ 0 ) <-> ( # ` [ w ] .~ ) = ( # ` 1o ) ) ) | 
						
							| 94 |  | df1o2 |  |-  1o = { (/) } | 
						
							| 95 |  | snfi |  |-  { (/) } e. Fin | 
						
							| 96 | 94 95 | eqeltri |  |-  1o e. Fin | 
						
							| 97 |  | hashen |  |-  ( ( [ w ] .~ e. Fin /\ 1o e. Fin ) -> ( ( # ` [ w ] .~ ) = ( # ` 1o ) <-> [ w ] .~ ~~ 1o ) ) | 
						
							| 98 | 52 96 97 | sylancl |  |-  ( ( ph /\ w e. Y ) -> ( ( # ` [ w ] .~ ) = ( # ` 1o ) <-> [ w ] .~ ~~ 1o ) ) | 
						
							| 99 | 93 98 | bitrd |  |-  ( ( ph /\ w e. Y ) -> ( ( P ^ ( P pCnt ( # ` [ w ] .~ ) ) ) = ( P ^ 0 ) <-> [ w ] .~ ~~ 1o ) ) | 
						
							| 100 |  | en1b |  |-  ( [ w ] .~ ~~ 1o <-> [ w ] .~ = { U. [ w ] .~ } ) | 
						
							| 101 | 99 100 | bitrdi |  |-  ( ( ph /\ w e. Y ) -> ( ( P ^ ( P pCnt ( # ` [ w ] .~ ) ) ) = ( P ^ 0 ) <-> [ w ] .~ = { U. [ w ] .~ } ) ) | 
						
							| 102 | 44 | adantr |  |-  ( ( ( ph /\ w e. Y ) /\ ( h e. X /\ [ w ] .~ = { U. [ w ] .~ } ) ) -> w e. Y ) | 
						
							| 103 | 2 | ad2antrr |  |-  ( ( ( ph /\ w e. Y ) /\ ( h e. X /\ [ w ] .~ = { U. [ w ] .~ } ) ) -> .(+) e. ( G GrpAct Y ) ) | 
						
							| 104 | 1 | gaf |  |-  ( .(+) e. ( G GrpAct Y ) -> .(+) : ( X X. Y ) --> Y ) | 
						
							| 105 | 103 104 | syl |  |-  ( ( ( ph /\ w e. Y ) /\ ( h e. X /\ [ w ] .~ = { U. [ w ] .~ } ) ) -> .(+) : ( X X. Y ) --> Y ) | 
						
							| 106 |  | simprl |  |-  ( ( ( ph /\ w e. Y ) /\ ( h e. X /\ [ w ] .~ = { U. [ w ] .~ } ) ) -> h e. X ) | 
						
							| 107 | 105 106 102 | fovcdmd |  |-  ( ( ( ph /\ w e. Y ) /\ ( h e. X /\ [ w ] .~ = { U. [ w ] .~ } ) ) -> ( h .(+) w ) e. Y ) | 
						
							| 108 |  | eqid |  |-  ( h .(+) w ) = ( h .(+) w ) | 
						
							| 109 |  | oveq1 |  |-  ( k = h -> ( k .(+) w ) = ( h .(+) w ) ) | 
						
							| 110 | 109 | eqeq1d |  |-  ( k = h -> ( ( k .(+) w ) = ( h .(+) w ) <-> ( h .(+) w ) = ( h .(+) w ) ) ) | 
						
							| 111 | 110 | rspcev |  |-  ( ( h e. X /\ ( h .(+) w ) = ( h .(+) w ) ) -> E. k e. X ( k .(+) w ) = ( h .(+) w ) ) | 
						
							| 112 | 106 108 111 | sylancl |  |-  ( ( ( ph /\ w e. Y ) /\ ( h e. X /\ [ w ] .~ = { U. [ w ] .~ } ) ) -> E. k e. X ( k .(+) w ) = ( h .(+) w ) ) | 
						
							| 113 | 7 | gaorb |  |-  ( w .~ ( h .(+) w ) <-> ( w e. Y /\ ( h .(+) w ) e. Y /\ E. k e. X ( k .(+) w ) = ( h .(+) w ) ) ) | 
						
							| 114 | 102 107 112 113 | syl3anbrc |  |-  ( ( ( ph /\ w e. Y ) /\ ( h e. X /\ [ w ] .~ = { U. [ w ] .~ } ) ) -> w .~ ( h .(+) w ) ) | 
						
							| 115 |  | ovex |  |-  ( h .(+) w ) e. _V | 
						
							| 116 | 115 46 | elec |  |-  ( ( h .(+) w ) e. [ w ] .~ <-> w .~ ( h .(+) w ) ) | 
						
							| 117 | 114 116 | sylibr |  |-  ( ( ( ph /\ w e. Y ) /\ ( h e. X /\ [ w ] .~ = { U. [ w ] .~ } ) ) -> ( h .(+) w ) e. [ w ] .~ ) | 
						
							| 118 |  | simprr |  |-  ( ( ( ph /\ w e. Y ) /\ ( h e. X /\ [ w ] .~ = { U. [ w ] .~ } ) ) -> [ w ] .~ = { U. [ w ] .~ } ) | 
						
							| 119 | 117 118 | eleqtrd |  |-  ( ( ( ph /\ w e. Y ) /\ ( h e. X /\ [ w ] .~ = { U. [ w ] .~ } ) ) -> ( h .(+) w ) e. { U. [ w ] .~ } ) | 
						
							| 120 | 115 | elsn |  |-  ( ( h .(+) w ) e. { U. [ w ] .~ } <-> ( h .(+) w ) = U. [ w ] .~ ) | 
						
							| 121 | 119 120 | sylib |  |-  ( ( ( ph /\ w e. Y ) /\ ( h e. X /\ [ w ] .~ = { U. [ w ] .~ } ) ) -> ( h .(+) w ) = U. [ w ] .~ ) | 
						
							| 122 | 48 | adantr |  |-  ( ( ( ph /\ w e. Y ) /\ ( h e. X /\ [ w ] .~ = { U. [ w ] .~ } ) ) -> w e. [ w ] .~ ) | 
						
							| 123 | 122 118 | eleqtrd |  |-  ( ( ( ph /\ w e. Y ) /\ ( h e. X /\ [ w ] .~ = { U. [ w ] .~ } ) ) -> w e. { U. [ w ] .~ } ) | 
						
							| 124 | 46 | elsn |  |-  ( w e. { U. [ w ] .~ } <-> w = U. [ w ] .~ ) | 
						
							| 125 | 123 124 | sylib |  |-  ( ( ( ph /\ w e. Y ) /\ ( h e. X /\ [ w ] .~ = { U. [ w ] .~ } ) ) -> w = U. [ w ] .~ ) | 
						
							| 126 | 121 125 | eqtr4d |  |-  ( ( ( ph /\ w e. Y ) /\ ( h e. X /\ [ w ] .~ = { U. [ w ] .~ } ) ) -> ( h .(+) w ) = w ) | 
						
							| 127 | 126 | expr |  |-  ( ( ( ph /\ w e. Y ) /\ h e. X ) -> ( [ w ] .~ = { U. [ w ] .~ } -> ( h .(+) w ) = w ) ) | 
						
							| 128 | 127 | ralrimdva |  |-  ( ( ph /\ w e. Y ) -> ( [ w ] .~ = { U. [ w ] .~ } -> A. h e. X ( h .(+) w ) = w ) ) | 
						
							| 129 | 101 128 | sylbid |  |-  ( ( ph /\ w e. Y ) -> ( ( P ^ ( P pCnt ( # ` [ w ] .~ ) ) ) = ( P ^ 0 ) -> A. h e. X ( h .(+) w ) = w ) ) | 
						
							| 130 | 58 129 | syl5 |  |-  ( ( ph /\ w e. Y ) -> ( ( P pCnt ( # ` [ w ] .~ ) ) = 0 -> A. h e. X ( h .(+) w ) = w ) ) | 
						
							| 131 | 57 130 | sylbird |  |-  ( ( ph /\ w e. Y ) -> ( -. P || ( # ` [ w ] .~ ) -> A. h e. X ( h .(+) w ) = w ) ) | 
						
							| 132 |  | oveq2 |  |-  ( u = w -> ( h .(+) u ) = ( h .(+) w ) ) | 
						
							| 133 |  | id |  |-  ( u = w -> u = w ) | 
						
							| 134 | 132 133 | eqeq12d |  |-  ( u = w -> ( ( h .(+) u ) = u <-> ( h .(+) w ) = w ) ) | 
						
							| 135 | 134 | ralbidv |  |-  ( u = w -> ( A. h e. X ( h .(+) u ) = u <-> A. h e. X ( h .(+) w ) = w ) ) | 
						
							| 136 | 135 6 | elrab2 |  |-  ( w e. Z <-> ( w e. Y /\ A. h e. X ( h .(+) w ) = w ) ) | 
						
							| 137 | 136 | baib |  |-  ( w e. Y -> ( w e. Z <-> A. h e. X ( h .(+) w ) = w ) ) | 
						
							| 138 | 137 | adantl |  |-  ( ( ph /\ w e. Y ) -> ( w e. Z <-> A. h e. X ( h .(+) w ) = w ) ) | 
						
							| 139 | 131 138 | sylibrd |  |-  ( ( ph /\ w e. Y ) -> ( -. P || ( # ` [ w ] .~ ) -> w e. Z ) ) | 
						
							| 140 | 1 2 3 4 5 6 7 | sylow2alem1 |  |-  ( ( ph /\ w e. Z ) -> [ w ] .~ = { w } ) | 
						
							| 141 |  | simpr |  |-  ( ( ph /\ w e. Z ) -> w e. Z ) | 
						
							| 142 | 141 | snssd |  |-  ( ( ph /\ w e. Z ) -> { w } C_ Z ) | 
						
							| 143 | 140 142 | eqsstrd |  |-  ( ( ph /\ w e. Z ) -> [ w ] .~ C_ Z ) | 
						
							| 144 | 143 | ex |  |-  ( ph -> ( w e. Z -> [ w ] .~ C_ Z ) ) | 
						
							| 145 | 144 | adantr |  |-  ( ( ph /\ w e. Y ) -> ( w e. Z -> [ w ] .~ C_ Z ) ) | 
						
							| 146 | 139 145 | syld |  |-  ( ( ph /\ w e. Y ) -> ( -. P || ( # ` [ w ] .~ ) -> [ w ] .~ C_ Z ) ) | 
						
							| 147 | 146 | con1d |  |-  ( ( ph /\ w e. Y ) -> ( -. [ w ] .~ C_ Z -> P || ( # ` [ w ] .~ ) ) ) | 
						
							| 148 | 34 41 147 | ectocld |  |-  ( ( ph /\ z e. ( Y /. .~ ) ) -> ( -. z e. ~P Z -> P || ( # ` z ) ) ) | 
						
							| 149 | 148 | impr |  |-  ( ( ph /\ ( z e. ( Y /. .~ ) /\ -. z e. ~P Z ) ) -> P || ( # ` z ) ) | 
						
							| 150 | 33 149 | sylan2b |  |-  ( ( ph /\ z e. ( ( Y /. .~ ) \ ~P Z ) ) -> P || ( # ` z ) ) | 
						
							| 151 | 15 23 32 150 | fsumdvds |  |-  ( ph -> P || sum_ z e. ( ( Y /. .~ ) \ ~P Z ) ( # ` z ) ) |