Step |
Hyp |
Ref |
Expression |
1 |
|
sylow2a.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
2 |
|
sylow2a.m |
⊢ ( 𝜑 → ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ) |
3 |
|
sylow2a.p |
⊢ ( 𝜑 → 𝑃 pGrp 𝐺 ) |
4 |
|
sylow2a.f |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
5 |
|
sylow2a.y |
⊢ ( 𝜑 → 𝑌 ∈ Fin ) |
6 |
|
sylow2a.z |
⊢ 𝑍 = { 𝑢 ∈ 𝑌 ∣ ∀ ℎ ∈ 𝑋 ( ℎ ⊕ 𝑢 ) = 𝑢 } |
7 |
|
sylow2a.r |
⊢ ∼ = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝑌 ∧ ∃ 𝑔 ∈ 𝑋 ( 𝑔 ⊕ 𝑥 ) = 𝑦 ) } |
8 |
|
pwfi |
⊢ ( 𝑌 ∈ Fin ↔ 𝒫 𝑌 ∈ Fin ) |
9 |
5 8
|
sylib |
⊢ ( 𝜑 → 𝒫 𝑌 ∈ Fin ) |
10 |
7 1
|
gaorber |
⊢ ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) → ∼ Er 𝑌 ) |
11 |
2 10
|
syl |
⊢ ( 𝜑 → ∼ Er 𝑌 ) |
12 |
11
|
qsss |
⊢ ( 𝜑 → ( 𝑌 / ∼ ) ⊆ 𝒫 𝑌 ) |
13 |
9 12
|
ssfid |
⊢ ( 𝜑 → ( 𝑌 / ∼ ) ∈ Fin ) |
14 |
|
diffi |
⊢ ( ( 𝑌 / ∼ ) ∈ Fin → ( ( 𝑌 / ∼ ) ∖ 𝒫 𝑍 ) ∈ Fin ) |
15 |
13 14
|
syl |
⊢ ( 𝜑 → ( ( 𝑌 / ∼ ) ∖ 𝒫 𝑍 ) ∈ Fin ) |
16 |
|
gagrp |
⊢ ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) → 𝐺 ∈ Grp ) |
17 |
2 16
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
18 |
1
|
pgpfi |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) → ( 𝑃 pGrp 𝐺 ↔ ( 𝑃 ∈ ℙ ∧ ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑛 ) ) ) ) |
19 |
17 4 18
|
syl2anc |
⊢ ( 𝜑 → ( 𝑃 pGrp 𝐺 ↔ ( 𝑃 ∈ ℙ ∧ ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑛 ) ) ) ) |
20 |
3 19
|
mpbid |
⊢ ( 𝜑 → ( 𝑃 ∈ ℙ ∧ ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑛 ) ) ) |
21 |
20
|
simpld |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
22 |
|
prmz |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℤ ) |
23 |
21 22
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ ℤ ) |
24 |
|
eldifi |
⊢ ( 𝑧 ∈ ( ( 𝑌 / ∼ ) ∖ 𝒫 𝑍 ) → 𝑧 ∈ ( 𝑌 / ∼ ) ) |
25 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 / ∼ ) ) → 𝑌 ∈ Fin ) |
26 |
12
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 / ∼ ) ) → 𝑧 ∈ 𝒫 𝑌 ) |
27 |
26
|
elpwid |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 / ∼ ) ) → 𝑧 ⊆ 𝑌 ) |
28 |
25 27
|
ssfid |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 / ∼ ) ) → 𝑧 ∈ Fin ) |
29 |
24 28
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝑌 / ∼ ) ∖ 𝒫 𝑍 ) ) → 𝑧 ∈ Fin ) |
30 |
|
hashcl |
⊢ ( 𝑧 ∈ Fin → ( ♯ ‘ 𝑧 ) ∈ ℕ0 ) |
31 |
29 30
|
syl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝑌 / ∼ ) ∖ 𝒫 𝑍 ) ) → ( ♯ ‘ 𝑧 ) ∈ ℕ0 ) |
32 |
31
|
nn0zd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝑌 / ∼ ) ∖ 𝒫 𝑍 ) ) → ( ♯ ‘ 𝑧 ) ∈ ℤ ) |
33 |
|
eldif |
⊢ ( 𝑧 ∈ ( ( 𝑌 / ∼ ) ∖ 𝒫 𝑍 ) ↔ ( 𝑧 ∈ ( 𝑌 / ∼ ) ∧ ¬ 𝑧 ∈ 𝒫 𝑍 ) ) |
34 |
|
eqid |
⊢ ( 𝑌 / ∼ ) = ( 𝑌 / ∼ ) |
35 |
|
sseq1 |
⊢ ( [ 𝑤 ] ∼ = 𝑧 → ( [ 𝑤 ] ∼ ⊆ 𝑍 ↔ 𝑧 ⊆ 𝑍 ) ) |
36 |
|
velpw |
⊢ ( 𝑧 ∈ 𝒫 𝑍 ↔ 𝑧 ⊆ 𝑍 ) |
37 |
35 36
|
bitr4di |
⊢ ( [ 𝑤 ] ∼ = 𝑧 → ( [ 𝑤 ] ∼ ⊆ 𝑍 ↔ 𝑧 ∈ 𝒫 𝑍 ) ) |
38 |
37
|
notbid |
⊢ ( [ 𝑤 ] ∼ = 𝑧 → ( ¬ [ 𝑤 ] ∼ ⊆ 𝑍 ↔ ¬ 𝑧 ∈ 𝒫 𝑍 ) ) |
39 |
|
fveq2 |
⊢ ( [ 𝑤 ] ∼ = 𝑧 → ( ♯ ‘ [ 𝑤 ] ∼ ) = ( ♯ ‘ 𝑧 ) ) |
40 |
39
|
breq2d |
⊢ ( [ 𝑤 ] ∼ = 𝑧 → ( 𝑃 ∥ ( ♯ ‘ [ 𝑤 ] ∼ ) ↔ 𝑃 ∥ ( ♯ ‘ 𝑧 ) ) ) |
41 |
38 40
|
imbi12d |
⊢ ( [ 𝑤 ] ∼ = 𝑧 → ( ( ¬ [ 𝑤 ] ∼ ⊆ 𝑍 → 𝑃 ∥ ( ♯ ‘ [ 𝑤 ] ∼ ) ) ↔ ( ¬ 𝑧 ∈ 𝒫 𝑍 → 𝑃 ∥ ( ♯ ‘ 𝑧 ) ) ) ) |
42 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑌 ) → 𝑃 ∈ ℙ ) |
43 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑌 ) → ∼ Er 𝑌 ) |
44 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑌 ) → 𝑤 ∈ 𝑌 ) |
45 |
43 44
|
erref |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑌 ) → 𝑤 ∼ 𝑤 ) |
46 |
|
vex |
⊢ 𝑤 ∈ V |
47 |
46 46
|
elec |
⊢ ( 𝑤 ∈ [ 𝑤 ] ∼ ↔ 𝑤 ∼ 𝑤 ) |
48 |
45 47
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑌 ) → 𝑤 ∈ [ 𝑤 ] ∼ ) |
49 |
48
|
ne0d |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑌 ) → [ 𝑤 ] ∼ ≠ ∅ ) |
50 |
11
|
ecss |
⊢ ( 𝜑 → [ 𝑤 ] ∼ ⊆ 𝑌 ) |
51 |
5 50
|
ssfid |
⊢ ( 𝜑 → [ 𝑤 ] ∼ ∈ Fin ) |
52 |
51
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑌 ) → [ 𝑤 ] ∼ ∈ Fin ) |
53 |
|
hashnncl |
⊢ ( [ 𝑤 ] ∼ ∈ Fin → ( ( ♯ ‘ [ 𝑤 ] ∼ ) ∈ ℕ ↔ [ 𝑤 ] ∼ ≠ ∅ ) ) |
54 |
52 53
|
syl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑌 ) → ( ( ♯ ‘ [ 𝑤 ] ∼ ) ∈ ℕ ↔ [ 𝑤 ] ∼ ≠ ∅ ) ) |
55 |
49 54
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑌 ) → ( ♯ ‘ [ 𝑤 ] ∼ ) ∈ ℕ ) |
56 |
|
pceq0 |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( ♯ ‘ [ 𝑤 ] ∼ ) ∈ ℕ ) → ( ( 𝑃 pCnt ( ♯ ‘ [ 𝑤 ] ∼ ) ) = 0 ↔ ¬ 𝑃 ∥ ( ♯ ‘ [ 𝑤 ] ∼ ) ) ) |
57 |
42 55 56
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑌 ) → ( ( 𝑃 pCnt ( ♯ ‘ [ 𝑤 ] ∼ ) ) = 0 ↔ ¬ 𝑃 ∥ ( ♯ ‘ [ 𝑤 ] ∼ ) ) ) |
58 |
|
oveq2 |
⊢ ( ( 𝑃 pCnt ( ♯ ‘ [ 𝑤 ] ∼ ) ) = 0 → ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ [ 𝑤 ] ∼ ) ) ) = ( 𝑃 ↑ 0 ) ) |
59 |
|
hashcl |
⊢ ( [ 𝑤 ] ∼ ∈ Fin → ( ♯ ‘ [ 𝑤 ] ∼ ) ∈ ℕ0 ) |
60 |
51 59
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ [ 𝑤 ] ∼ ) ∈ ℕ0 ) |
61 |
60
|
nn0zd |
⊢ ( 𝜑 → ( ♯ ‘ [ 𝑤 ] ∼ ) ∈ ℤ ) |
62 |
|
ssrab2 |
⊢ { 𝑣 ∈ 𝑋 ∣ ( 𝑣 ⊕ 𝑤 ) = 𝑤 } ⊆ 𝑋 |
63 |
|
ssfi |
⊢ ( ( 𝑋 ∈ Fin ∧ { 𝑣 ∈ 𝑋 ∣ ( 𝑣 ⊕ 𝑤 ) = 𝑤 } ⊆ 𝑋 ) → { 𝑣 ∈ 𝑋 ∣ ( 𝑣 ⊕ 𝑤 ) = 𝑤 } ∈ Fin ) |
64 |
4 62 63
|
sylancl |
⊢ ( 𝜑 → { 𝑣 ∈ 𝑋 ∣ ( 𝑣 ⊕ 𝑤 ) = 𝑤 } ∈ Fin ) |
65 |
|
hashcl |
⊢ ( { 𝑣 ∈ 𝑋 ∣ ( 𝑣 ⊕ 𝑤 ) = 𝑤 } ∈ Fin → ( ♯ ‘ { 𝑣 ∈ 𝑋 ∣ ( 𝑣 ⊕ 𝑤 ) = 𝑤 } ) ∈ ℕ0 ) |
66 |
64 65
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑣 ∈ 𝑋 ∣ ( 𝑣 ⊕ 𝑤 ) = 𝑤 } ) ∈ ℕ0 ) |
67 |
66
|
nn0zd |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑣 ∈ 𝑋 ∣ ( 𝑣 ⊕ 𝑤 ) = 𝑤 } ) ∈ ℤ ) |
68 |
|
dvdsmul1 |
⊢ ( ( ( ♯ ‘ [ 𝑤 ] ∼ ) ∈ ℤ ∧ ( ♯ ‘ { 𝑣 ∈ 𝑋 ∣ ( 𝑣 ⊕ 𝑤 ) = 𝑤 } ) ∈ ℤ ) → ( ♯ ‘ [ 𝑤 ] ∼ ) ∥ ( ( ♯ ‘ [ 𝑤 ] ∼ ) · ( ♯ ‘ { 𝑣 ∈ 𝑋 ∣ ( 𝑣 ⊕ 𝑤 ) = 𝑤 } ) ) ) |
69 |
61 67 68
|
syl2anc |
⊢ ( 𝜑 → ( ♯ ‘ [ 𝑤 ] ∼ ) ∥ ( ( ♯ ‘ [ 𝑤 ] ∼ ) · ( ♯ ‘ { 𝑣 ∈ 𝑋 ∣ ( 𝑣 ⊕ 𝑤 ) = 𝑤 } ) ) ) |
70 |
69
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑌 ) → ( ♯ ‘ [ 𝑤 ] ∼ ) ∥ ( ( ♯ ‘ [ 𝑤 ] ∼ ) · ( ♯ ‘ { 𝑣 ∈ 𝑋 ∣ ( 𝑣 ⊕ 𝑤 ) = 𝑤 } ) ) ) |
71 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑌 ) → ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ) |
72 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑌 ) → 𝑋 ∈ Fin ) |
73 |
|
eqid |
⊢ { 𝑣 ∈ 𝑋 ∣ ( 𝑣 ⊕ 𝑤 ) = 𝑤 } = { 𝑣 ∈ 𝑋 ∣ ( 𝑣 ⊕ 𝑤 ) = 𝑤 } |
74 |
|
eqid |
⊢ ( 𝐺 ~QG { 𝑣 ∈ 𝑋 ∣ ( 𝑣 ⊕ 𝑤 ) = 𝑤 } ) = ( 𝐺 ~QG { 𝑣 ∈ 𝑋 ∣ ( 𝑣 ⊕ 𝑤 ) = 𝑤 } ) |
75 |
1 73 74 7
|
orbsta2 |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑤 ∈ 𝑌 ) ∧ 𝑋 ∈ Fin ) → ( ♯ ‘ 𝑋 ) = ( ( ♯ ‘ [ 𝑤 ] ∼ ) · ( ♯ ‘ { 𝑣 ∈ 𝑋 ∣ ( 𝑣 ⊕ 𝑤 ) = 𝑤 } ) ) ) |
76 |
71 44 72 75
|
syl21anc |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑌 ) → ( ♯ ‘ 𝑋 ) = ( ( ♯ ‘ [ 𝑤 ] ∼ ) · ( ♯ ‘ { 𝑣 ∈ 𝑋 ∣ ( 𝑣 ⊕ 𝑤 ) = 𝑤 } ) ) ) |
77 |
70 76
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑌 ) → ( ♯ ‘ [ 𝑤 ] ∼ ) ∥ ( ♯ ‘ 𝑋 ) ) |
78 |
20
|
simprd |
⊢ ( 𝜑 → ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑛 ) ) |
79 |
78
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑌 ) → ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑛 ) ) |
80 |
|
breq2 |
⊢ ( ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑛 ) → ( ( ♯ ‘ [ 𝑤 ] ∼ ) ∥ ( ♯ ‘ 𝑋 ) ↔ ( ♯ ‘ [ 𝑤 ] ∼ ) ∥ ( 𝑃 ↑ 𝑛 ) ) ) |
81 |
80
|
biimpcd |
⊢ ( ( ♯ ‘ [ 𝑤 ] ∼ ) ∥ ( ♯ ‘ 𝑋 ) → ( ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑛 ) → ( ♯ ‘ [ 𝑤 ] ∼ ) ∥ ( 𝑃 ↑ 𝑛 ) ) ) |
82 |
81
|
reximdv |
⊢ ( ( ♯ ‘ [ 𝑤 ] ∼ ) ∥ ( ♯ ‘ 𝑋 ) → ( ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑛 ) → ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ [ 𝑤 ] ∼ ) ∥ ( 𝑃 ↑ 𝑛 ) ) ) |
83 |
77 79 82
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑌 ) → ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ [ 𝑤 ] ∼ ) ∥ ( 𝑃 ↑ 𝑛 ) ) |
84 |
|
pcprmpw2 |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( ♯ ‘ [ 𝑤 ] ∼ ) ∈ ℕ ) → ( ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ [ 𝑤 ] ∼ ) ∥ ( 𝑃 ↑ 𝑛 ) ↔ ( ♯ ‘ [ 𝑤 ] ∼ ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ [ 𝑤 ] ∼ ) ) ) ) ) |
85 |
42 55 84
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑌 ) → ( ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ [ 𝑤 ] ∼ ) ∥ ( 𝑃 ↑ 𝑛 ) ↔ ( ♯ ‘ [ 𝑤 ] ∼ ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ [ 𝑤 ] ∼ ) ) ) ) ) |
86 |
83 85
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑌 ) → ( ♯ ‘ [ 𝑤 ] ∼ ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ [ 𝑤 ] ∼ ) ) ) ) |
87 |
86
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑌 ) → ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ [ 𝑤 ] ∼ ) ) ) = ( ♯ ‘ [ 𝑤 ] ∼ ) ) |
88 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑌 ) → 𝑃 ∈ ℤ ) |
89 |
88
|
zcnd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑌 ) → 𝑃 ∈ ℂ ) |
90 |
89
|
exp0d |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑌 ) → ( 𝑃 ↑ 0 ) = 1 ) |
91 |
|
hash1 |
⊢ ( ♯ ‘ 1o ) = 1 |
92 |
90 91
|
eqtr4di |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑌 ) → ( 𝑃 ↑ 0 ) = ( ♯ ‘ 1o ) ) |
93 |
87 92
|
eqeq12d |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑌 ) → ( ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ [ 𝑤 ] ∼ ) ) ) = ( 𝑃 ↑ 0 ) ↔ ( ♯ ‘ [ 𝑤 ] ∼ ) = ( ♯ ‘ 1o ) ) ) |
94 |
|
df1o2 |
⊢ 1o = { ∅ } |
95 |
|
snfi |
⊢ { ∅ } ∈ Fin |
96 |
94 95
|
eqeltri |
⊢ 1o ∈ Fin |
97 |
|
hashen |
⊢ ( ( [ 𝑤 ] ∼ ∈ Fin ∧ 1o ∈ Fin ) → ( ( ♯ ‘ [ 𝑤 ] ∼ ) = ( ♯ ‘ 1o ) ↔ [ 𝑤 ] ∼ ≈ 1o ) ) |
98 |
52 96 97
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑌 ) → ( ( ♯ ‘ [ 𝑤 ] ∼ ) = ( ♯ ‘ 1o ) ↔ [ 𝑤 ] ∼ ≈ 1o ) ) |
99 |
93 98
|
bitrd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑌 ) → ( ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ [ 𝑤 ] ∼ ) ) ) = ( 𝑃 ↑ 0 ) ↔ [ 𝑤 ] ∼ ≈ 1o ) ) |
100 |
|
en1b |
⊢ ( [ 𝑤 ] ∼ ≈ 1o ↔ [ 𝑤 ] ∼ = { ∪ [ 𝑤 ] ∼ } ) |
101 |
99 100
|
bitrdi |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑌 ) → ( ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ [ 𝑤 ] ∼ ) ) ) = ( 𝑃 ↑ 0 ) ↔ [ 𝑤 ] ∼ = { ∪ [ 𝑤 ] ∼ } ) ) |
102 |
44
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑌 ) ∧ ( ℎ ∈ 𝑋 ∧ [ 𝑤 ] ∼ = { ∪ [ 𝑤 ] ∼ } ) ) → 𝑤 ∈ 𝑌 ) |
103 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑌 ) ∧ ( ℎ ∈ 𝑋 ∧ [ 𝑤 ] ∼ = { ∪ [ 𝑤 ] ∼ } ) ) → ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ) |
104 |
1
|
gaf |
⊢ ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) → ⊕ : ( 𝑋 × 𝑌 ) ⟶ 𝑌 ) |
105 |
103 104
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑌 ) ∧ ( ℎ ∈ 𝑋 ∧ [ 𝑤 ] ∼ = { ∪ [ 𝑤 ] ∼ } ) ) → ⊕ : ( 𝑋 × 𝑌 ) ⟶ 𝑌 ) |
106 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑌 ) ∧ ( ℎ ∈ 𝑋 ∧ [ 𝑤 ] ∼ = { ∪ [ 𝑤 ] ∼ } ) ) → ℎ ∈ 𝑋 ) |
107 |
105 106 102
|
fovrnd |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑌 ) ∧ ( ℎ ∈ 𝑋 ∧ [ 𝑤 ] ∼ = { ∪ [ 𝑤 ] ∼ } ) ) → ( ℎ ⊕ 𝑤 ) ∈ 𝑌 ) |
108 |
|
eqid |
⊢ ( ℎ ⊕ 𝑤 ) = ( ℎ ⊕ 𝑤 ) |
109 |
|
oveq1 |
⊢ ( 𝑘 = ℎ → ( 𝑘 ⊕ 𝑤 ) = ( ℎ ⊕ 𝑤 ) ) |
110 |
109
|
eqeq1d |
⊢ ( 𝑘 = ℎ → ( ( 𝑘 ⊕ 𝑤 ) = ( ℎ ⊕ 𝑤 ) ↔ ( ℎ ⊕ 𝑤 ) = ( ℎ ⊕ 𝑤 ) ) ) |
111 |
110
|
rspcev |
⊢ ( ( ℎ ∈ 𝑋 ∧ ( ℎ ⊕ 𝑤 ) = ( ℎ ⊕ 𝑤 ) ) → ∃ 𝑘 ∈ 𝑋 ( 𝑘 ⊕ 𝑤 ) = ( ℎ ⊕ 𝑤 ) ) |
112 |
106 108 111
|
sylancl |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑌 ) ∧ ( ℎ ∈ 𝑋 ∧ [ 𝑤 ] ∼ = { ∪ [ 𝑤 ] ∼ } ) ) → ∃ 𝑘 ∈ 𝑋 ( 𝑘 ⊕ 𝑤 ) = ( ℎ ⊕ 𝑤 ) ) |
113 |
7
|
gaorb |
⊢ ( 𝑤 ∼ ( ℎ ⊕ 𝑤 ) ↔ ( 𝑤 ∈ 𝑌 ∧ ( ℎ ⊕ 𝑤 ) ∈ 𝑌 ∧ ∃ 𝑘 ∈ 𝑋 ( 𝑘 ⊕ 𝑤 ) = ( ℎ ⊕ 𝑤 ) ) ) |
114 |
102 107 112 113
|
syl3anbrc |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑌 ) ∧ ( ℎ ∈ 𝑋 ∧ [ 𝑤 ] ∼ = { ∪ [ 𝑤 ] ∼ } ) ) → 𝑤 ∼ ( ℎ ⊕ 𝑤 ) ) |
115 |
|
ovex |
⊢ ( ℎ ⊕ 𝑤 ) ∈ V |
116 |
115 46
|
elec |
⊢ ( ( ℎ ⊕ 𝑤 ) ∈ [ 𝑤 ] ∼ ↔ 𝑤 ∼ ( ℎ ⊕ 𝑤 ) ) |
117 |
114 116
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑌 ) ∧ ( ℎ ∈ 𝑋 ∧ [ 𝑤 ] ∼ = { ∪ [ 𝑤 ] ∼ } ) ) → ( ℎ ⊕ 𝑤 ) ∈ [ 𝑤 ] ∼ ) |
118 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑌 ) ∧ ( ℎ ∈ 𝑋 ∧ [ 𝑤 ] ∼ = { ∪ [ 𝑤 ] ∼ } ) ) → [ 𝑤 ] ∼ = { ∪ [ 𝑤 ] ∼ } ) |
119 |
117 118
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑌 ) ∧ ( ℎ ∈ 𝑋 ∧ [ 𝑤 ] ∼ = { ∪ [ 𝑤 ] ∼ } ) ) → ( ℎ ⊕ 𝑤 ) ∈ { ∪ [ 𝑤 ] ∼ } ) |
120 |
115
|
elsn |
⊢ ( ( ℎ ⊕ 𝑤 ) ∈ { ∪ [ 𝑤 ] ∼ } ↔ ( ℎ ⊕ 𝑤 ) = ∪ [ 𝑤 ] ∼ ) |
121 |
119 120
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑌 ) ∧ ( ℎ ∈ 𝑋 ∧ [ 𝑤 ] ∼ = { ∪ [ 𝑤 ] ∼ } ) ) → ( ℎ ⊕ 𝑤 ) = ∪ [ 𝑤 ] ∼ ) |
122 |
48
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑌 ) ∧ ( ℎ ∈ 𝑋 ∧ [ 𝑤 ] ∼ = { ∪ [ 𝑤 ] ∼ } ) ) → 𝑤 ∈ [ 𝑤 ] ∼ ) |
123 |
122 118
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑌 ) ∧ ( ℎ ∈ 𝑋 ∧ [ 𝑤 ] ∼ = { ∪ [ 𝑤 ] ∼ } ) ) → 𝑤 ∈ { ∪ [ 𝑤 ] ∼ } ) |
124 |
46
|
elsn |
⊢ ( 𝑤 ∈ { ∪ [ 𝑤 ] ∼ } ↔ 𝑤 = ∪ [ 𝑤 ] ∼ ) |
125 |
123 124
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑌 ) ∧ ( ℎ ∈ 𝑋 ∧ [ 𝑤 ] ∼ = { ∪ [ 𝑤 ] ∼ } ) ) → 𝑤 = ∪ [ 𝑤 ] ∼ ) |
126 |
121 125
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑌 ) ∧ ( ℎ ∈ 𝑋 ∧ [ 𝑤 ] ∼ = { ∪ [ 𝑤 ] ∼ } ) ) → ( ℎ ⊕ 𝑤 ) = 𝑤 ) |
127 |
126
|
expr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑌 ) ∧ ℎ ∈ 𝑋 ) → ( [ 𝑤 ] ∼ = { ∪ [ 𝑤 ] ∼ } → ( ℎ ⊕ 𝑤 ) = 𝑤 ) ) |
128 |
127
|
ralrimdva |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑌 ) → ( [ 𝑤 ] ∼ = { ∪ [ 𝑤 ] ∼ } → ∀ ℎ ∈ 𝑋 ( ℎ ⊕ 𝑤 ) = 𝑤 ) ) |
129 |
101 128
|
sylbid |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑌 ) → ( ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ [ 𝑤 ] ∼ ) ) ) = ( 𝑃 ↑ 0 ) → ∀ ℎ ∈ 𝑋 ( ℎ ⊕ 𝑤 ) = 𝑤 ) ) |
130 |
58 129
|
syl5 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑌 ) → ( ( 𝑃 pCnt ( ♯ ‘ [ 𝑤 ] ∼ ) ) = 0 → ∀ ℎ ∈ 𝑋 ( ℎ ⊕ 𝑤 ) = 𝑤 ) ) |
131 |
57 130
|
sylbird |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑌 ) → ( ¬ 𝑃 ∥ ( ♯ ‘ [ 𝑤 ] ∼ ) → ∀ ℎ ∈ 𝑋 ( ℎ ⊕ 𝑤 ) = 𝑤 ) ) |
132 |
|
oveq2 |
⊢ ( 𝑢 = 𝑤 → ( ℎ ⊕ 𝑢 ) = ( ℎ ⊕ 𝑤 ) ) |
133 |
|
id |
⊢ ( 𝑢 = 𝑤 → 𝑢 = 𝑤 ) |
134 |
132 133
|
eqeq12d |
⊢ ( 𝑢 = 𝑤 → ( ( ℎ ⊕ 𝑢 ) = 𝑢 ↔ ( ℎ ⊕ 𝑤 ) = 𝑤 ) ) |
135 |
134
|
ralbidv |
⊢ ( 𝑢 = 𝑤 → ( ∀ ℎ ∈ 𝑋 ( ℎ ⊕ 𝑢 ) = 𝑢 ↔ ∀ ℎ ∈ 𝑋 ( ℎ ⊕ 𝑤 ) = 𝑤 ) ) |
136 |
135 6
|
elrab2 |
⊢ ( 𝑤 ∈ 𝑍 ↔ ( 𝑤 ∈ 𝑌 ∧ ∀ ℎ ∈ 𝑋 ( ℎ ⊕ 𝑤 ) = 𝑤 ) ) |
137 |
136
|
baib |
⊢ ( 𝑤 ∈ 𝑌 → ( 𝑤 ∈ 𝑍 ↔ ∀ ℎ ∈ 𝑋 ( ℎ ⊕ 𝑤 ) = 𝑤 ) ) |
138 |
137
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑌 ) → ( 𝑤 ∈ 𝑍 ↔ ∀ ℎ ∈ 𝑋 ( ℎ ⊕ 𝑤 ) = 𝑤 ) ) |
139 |
131 138
|
sylibrd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑌 ) → ( ¬ 𝑃 ∥ ( ♯ ‘ [ 𝑤 ] ∼ ) → 𝑤 ∈ 𝑍 ) ) |
140 |
1 2 3 4 5 6 7
|
sylow2alem1 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → [ 𝑤 ] ∼ = { 𝑤 } ) |
141 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → 𝑤 ∈ 𝑍 ) |
142 |
141
|
snssd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → { 𝑤 } ⊆ 𝑍 ) |
143 |
140 142
|
eqsstrd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → [ 𝑤 ] ∼ ⊆ 𝑍 ) |
144 |
143
|
ex |
⊢ ( 𝜑 → ( 𝑤 ∈ 𝑍 → [ 𝑤 ] ∼ ⊆ 𝑍 ) ) |
145 |
144
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑌 ) → ( 𝑤 ∈ 𝑍 → [ 𝑤 ] ∼ ⊆ 𝑍 ) ) |
146 |
139 145
|
syld |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑌 ) → ( ¬ 𝑃 ∥ ( ♯ ‘ [ 𝑤 ] ∼ ) → [ 𝑤 ] ∼ ⊆ 𝑍 ) ) |
147 |
146
|
con1d |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑌 ) → ( ¬ [ 𝑤 ] ∼ ⊆ 𝑍 → 𝑃 ∥ ( ♯ ‘ [ 𝑤 ] ∼ ) ) ) |
148 |
34 41 147
|
ectocld |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑌 / ∼ ) ) → ( ¬ 𝑧 ∈ 𝒫 𝑍 → 𝑃 ∥ ( ♯ ‘ 𝑧 ) ) ) |
149 |
148
|
impr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝑌 / ∼ ) ∧ ¬ 𝑧 ∈ 𝒫 𝑍 ) ) → 𝑃 ∥ ( ♯ ‘ 𝑧 ) ) |
150 |
33 149
|
sylan2b |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝑌 / ∼ ) ∖ 𝒫 𝑍 ) ) → 𝑃 ∥ ( ♯ ‘ 𝑧 ) ) |
151 |
15 23 32 150
|
fsumdvds |
⊢ ( 𝜑 → 𝑃 ∥ Σ 𝑧 ∈ ( ( 𝑌 / ∼ ) ∖ 𝒫 𝑍 ) ( ♯ ‘ 𝑧 ) ) |