| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sylow2a.x | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | sylow2a.m | ⊢ ( 𝜑  →   ⊕   ∈  ( 𝐺  GrpAct  𝑌 ) ) | 
						
							| 3 |  | sylow2a.p | ⊢ ( 𝜑  →  𝑃  pGrp  𝐺 ) | 
						
							| 4 |  | sylow2a.f | ⊢ ( 𝜑  →  𝑋  ∈  Fin ) | 
						
							| 5 |  | sylow2a.y | ⊢ ( 𝜑  →  𝑌  ∈  Fin ) | 
						
							| 6 |  | sylow2a.z | ⊢ 𝑍  =  { 𝑢  ∈  𝑌  ∣  ∀ ℎ  ∈  𝑋 ( ℎ  ⊕  𝑢 )  =  𝑢 } | 
						
							| 7 |  | sylow2a.r | ⊢  ∼   =  { 〈 𝑥 ,  𝑦 〉  ∣  ( { 𝑥 ,  𝑦 }  ⊆  𝑌  ∧  ∃ 𝑔  ∈  𝑋 ( 𝑔  ⊕  𝑥 )  =  𝑦 ) } | 
						
							| 8 |  | pwfi | ⊢ ( 𝑌  ∈  Fin  ↔  𝒫  𝑌  ∈  Fin ) | 
						
							| 9 | 5 8 | sylib | ⊢ ( 𝜑  →  𝒫  𝑌  ∈  Fin ) | 
						
							| 10 | 7 1 | gaorber | ⊢ (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  →   ∼   Er  𝑌 ) | 
						
							| 11 | 2 10 | syl | ⊢ ( 𝜑  →   ∼   Er  𝑌 ) | 
						
							| 12 | 11 | qsss | ⊢ ( 𝜑  →  ( 𝑌  /   ∼  )  ⊆  𝒫  𝑌 ) | 
						
							| 13 | 9 12 | ssfid | ⊢ ( 𝜑  →  ( 𝑌  /   ∼  )  ∈  Fin ) | 
						
							| 14 |  | diffi | ⊢ ( ( 𝑌  /   ∼  )  ∈  Fin  →  ( ( 𝑌  /   ∼  )  ∖  𝒫  𝑍 )  ∈  Fin ) | 
						
							| 15 | 13 14 | syl | ⊢ ( 𝜑  →  ( ( 𝑌  /   ∼  )  ∖  𝒫  𝑍 )  ∈  Fin ) | 
						
							| 16 |  | gagrp | ⊢ (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  →  𝐺  ∈  Grp ) | 
						
							| 17 | 2 16 | syl | ⊢ ( 𝜑  →  𝐺  ∈  Grp ) | 
						
							| 18 | 1 | pgpfi | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin )  →  ( 𝑃  pGrp  𝐺  ↔  ( 𝑃  ∈  ℙ  ∧  ∃ 𝑛  ∈  ℕ0 ( ♯ ‘ 𝑋 )  =  ( 𝑃 ↑ 𝑛 ) ) ) ) | 
						
							| 19 | 17 4 18 | syl2anc | ⊢ ( 𝜑  →  ( 𝑃  pGrp  𝐺  ↔  ( 𝑃  ∈  ℙ  ∧  ∃ 𝑛  ∈  ℕ0 ( ♯ ‘ 𝑋 )  =  ( 𝑃 ↑ 𝑛 ) ) ) ) | 
						
							| 20 | 3 19 | mpbid | ⊢ ( 𝜑  →  ( 𝑃  ∈  ℙ  ∧  ∃ 𝑛  ∈  ℕ0 ( ♯ ‘ 𝑋 )  =  ( 𝑃 ↑ 𝑛 ) ) ) | 
						
							| 21 | 20 | simpld | ⊢ ( 𝜑  →  𝑃  ∈  ℙ ) | 
						
							| 22 |  | prmz | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℤ ) | 
						
							| 23 | 21 22 | syl | ⊢ ( 𝜑  →  𝑃  ∈  ℤ ) | 
						
							| 24 |  | eldifi | ⊢ ( 𝑧  ∈  ( ( 𝑌  /   ∼  )  ∖  𝒫  𝑍 )  →  𝑧  ∈  ( 𝑌  /   ∼  ) ) | 
						
							| 25 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑌  /   ∼  ) )  →  𝑌  ∈  Fin ) | 
						
							| 26 | 12 | sselda | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑌  /   ∼  ) )  →  𝑧  ∈  𝒫  𝑌 ) | 
						
							| 27 | 26 | elpwid | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑌  /   ∼  ) )  →  𝑧  ⊆  𝑌 ) | 
						
							| 28 | 25 27 | ssfid | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑌  /   ∼  ) )  →  𝑧  ∈  Fin ) | 
						
							| 29 | 24 28 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ( 𝑌  /   ∼  )  ∖  𝒫  𝑍 ) )  →  𝑧  ∈  Fin ) | 
						
							| 30 |  | hashcl | ⊢ ( 𝑧  ∈  Fin  →  ( ♯ ‘ 𝑧 )  ∈  ℕ0 ) | 
						
							| 31 | 29 30 | syl | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ( 𝑌  /   ∼  )  ∖  𝒫  𝑍 ) )  →  ( ♯ ‘ 𝑧 )  ∈  ℕ0 ) | 
						
							| 32 | 31 | nn0zd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ( 𝑌  /   ∼  )  ∖  𝒫  𝑍 ) )  →  ( ♯ ‘ 𝑧 )  ∈  ℤ ) | 
						
							| 33 |  | eldif | ⊢ ( 𝑧  ∈  ( ( 𝑌  /   ∼  )  ∖  𝒫  𝑍 )  ↔  ( 𝑧  ∈  ( 𝑌  /   ∼  )  ∧  ¬  𝑧  ∈  𝒫  𝑍 ) ) | 
						
							| 34 |  | eqid | ⊢ ( 𝑌  /   ∼  )  =  ( 𝑌  /   ∼  ) | 
						
							| 35 |  | sseq1 | ⊢ ( [ 𝑤 ]  ∼   =  𝑧  →  ( [ 𝑤 ]  ∼   ⊆  𝑍  ↔  𝑧  ⊆  𝑍 ) ) | 
						
							| 36 |  | velpw | ⊢ ( 𝑧  ∈  𝒫  𝑍  ↔  𝑧  ⊆  𝑍 ) | 
						
							| 37 | 35 36 | bitr4di | ⊢ ( [ 𝑤 ]  ∼   =  𝑧  →  ( [ 𝑤 ]  ∼   ⊆  𝑍  ↔  𝑧  ∈  𝒫  𝑍 ) ) | 
						
							| 38 | 37 | notbid | ⊢ ( [ 𝑤 ]  ∼   =  𝑧  →  ( ¬  [ 𝑤 ]  ∼   ⊆  𝑍  ↔  ¬  𝑧  ∈  𝒫  𝑍 ) ) | 
						
							| 39 |  | fveq2 | ⊢ ( [ 𝑤 ]  ∼   =  𝑧  →  ( ♯ ‘ [ 𝑤 ]  ∼  )  =  ( ♯ ‘ 𝑧 ) ) | 
						
							| 40 | 39 | breq2d | ⊢ ( [ 𝑤 ]  ∼   =  𝑧  →  ( 𝑃  ∥  ( ♯ ‘ [ 𝑤 ]  ∼  )  ↔  𝑃  ∥  ( ♯ ‘ 𝑧 ) ) ) | 
						
							| 41 | 38 40 | imbi12d | ⊢ ( [ 𝑤 ]  ∼   =  𝑧  →  ( ( ¬  [ 𝑤 ]  ∼   ⊆  𝑍  →  𝑃  ∥  ( ♯ ‘ [ 𝑤 ]  ∼  ) )  ↔  ( ¬  𝑧  ∈  𝒫  𝑍  →  𝑃  ∥  ( ♯ ‘ 𝑧 ) ) ) ) | 
						
							| 42 | 21 | adantr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑌 )  →  𝑃  ∈  ℙ ) | 
						
							| 43 | 11 | adantr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑌 )  →   ∼   Er  𝑌 ) | 
						
							| 44 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑌 )  →  𝑤  ∈  𝑌 ) | 
						
							| 45 | 43 44 | erref | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑌 )  →  𝑤  ∼  𝑤 ) | 
						
							| 46 |  | vex | ⊢ 𝑤  ∈  V | 
						
							| 47 | 46 46 | elec | ⊢ ( 𝑤  ∈  [ 𝑤 ]  ∼   ↔  𝑤  ∼  𝑤 ) | 
						
							| 48 | 45 47 | sylibr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑌 )  →  𝑤  ∈  [ 𝑤 ]  ∼  ) | 
						
							| 49 | 48 | ne0d | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑌 )  →  [ 𝑤 ]  ∼   ≠  ∅ ) | 
						
							| 50 | 11 | ecss | ⊢ ( 𝜑  →  [ 𝑤 ]  ∼   ⊆  𝑌 ) | 
						
							| 51 | 5 50 | ssfid | ⊢ ( 𝜑  →  [ 𝑤 ]  ∼   ∈  Fin ) | 
						
							| 52 | 51 | adantr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑌 )  →  [ 𝑤 ]  ∼   ∈  Fin ) | 
						
							| 53 |  | hashnncl | ⊢ ( [ 𝑤 ]  ∼   ∈  Fin  →  ( ( ♯ ‘ [ 𝑤 ]  ∼  )  ∈  ℕ  ↔  [ 𝑤 ]  ∼   ≠  ∅ ) ) | 
						
							| 54 | 52 53 | syl | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑌 )  →  ( ( ♯ ‘ [ 𝑤 ]  ∼  )  ∈  ℕ  ↔  [ 𝑤 ]  ∼   ≠  ∅ ) ) | 
						
							| 55 | 49 54 | mpbird | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑌 )  →  ( ♯ ‘ [ 𝑤 ]  ∼  )  ∈  ℕ ) | 
						
							| 56 |  | pceq0 | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( ♯ ‘ [ 𝑤 ]  ∼  )  ∈  ℕ )  →  ( ( 𝑃  pCnt  ( ♯ ‘ [ 𝑤 ]  ∼  ) )  =  0  ↔  ¬  𝑃  ∥  ( ♯ ‘ [ 𝑤 ]  ∼  ) ) ) | 
						
							| 57 | 42 55 56 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑌 )  →  ( ( 𝑃  pCnt  ( ♯ ‘ [ 𝑤 ]  ∼  ) )  =  0  ↔  ¬  𝑃  ∥  ( ♯ ‘ [ 𝑤 ]  ∼  ) ) ) | 
						
							| 58 |  | oveq2 | ⊢ ( ( 𝑃  pCnt  ( ♯ ‘ [ 𝑤 ]  ∼  ) )  =  0  →  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ [ 𝑤 ]  ∼  ) ) )  =  ( 𝑃 ↑ 0 ) ) | 
						
							| 59 |  | hashcl | ⊢ ( [ 𝑤 ]  ∼   ∈  Fin  →  ( ♯ ‘ [ 𝑤 ]  ∼  )  ∈  ℕ0 ) | 
						
							| 60 | 51 59 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ [ 𝑤 ]  ∼  )  ∈  ℕ0 ) | 
						
							| 61 | 60 | nn0zd | ⊢ ( 𝜑  →  ( ♯ ‘ [ 𝑤 ]  ∼  )  ∈  ℤ ) | 
						
							| 62 |  | ssrab2 | ⊢ { 𝑣  ∈  𝑋  ∣  ( 𝑣  ⊕  𝑤 )  =  𝑤 }  ⊆  𝑋 | 
						
							| 63 |  | ssfi | ⊢ ( ( 𝑋  ∈  Fin  ∧  { 𝑣  ∈  𝑋  ∣  ( 𝑣  ⊕  𝑤 )  =  𝑤 }  ⊆  𝑋 )  →  { 𝑣  ∈  𝑋  ∣  ( 𝑣  ⊕  𝑤 )  =  𝑤 }  ∈  Fin ) | 
						
							| 64 | 4 62 63 | sylancl | ⊢ ( 𝜑  →  { 𝑣  ∈  𝑋  ∣  ( 𝑣  ⊕  𝑤 )  =  𝑤 }  ∈  Fin ) | 
						
							| 65 |  | hashcl | ⊢ ( { 𝑣  ∈  𝑋  ∣  ( 𝑣  ⊕  𝑤 )  =  𝑤 }  ∈  Fin  →  ( ♯ ‘ { 𝑣  ∈  𝑋  ∣  ( 𝑣  ⊕  𝑤 )  =  𝑤 } )  ∈  ℕ0 ) | 
						
							| 66 | 64 65 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ { 𝑣  ∈  𝑋  ∣  ( 𝑣  ⊕  𝑤 )  =  𝑤 } )  ∈  ℕ0 ) | 
						
							| 67 | 66 | nn0zd | ⊢ ( 𝜑  →  ( ♯ ‘ { 𝑣  ∈  𝑋  ∣  ( 𝑣  ⊕  𝑤 )  =  𝑤 } )  ∈  ℤ ) | 
						
							| 68 |  | dvdsmul1 | ⊢ ( ( ( ♯ ‘ [ 𝑤 ]  ∼  )  ∈  ℤ  ∧  ( ♯ ‘ { 𝑣  ∈  𝑋  ∣  ( 𝑣  ⊕  𝑤 )  =  𝑤 } )  ∈  ℤ )  →  ( ♯ ‘ [ 𝑤 ]  ∼  )  ∥  ( ( ♯ ‘ [ 𝑤 ]  ∼  )  ·  ( ♯ ‘ { 𝑣  ∈  𝑋  ∣  ( 𝑣  ⊕  𝑤 )  =  𝑤 } ) ) ) | 
						
							| 69 | 61 67 68 | syl2anc | ⊢ ( 𝜑  →  ( ♯ ‘ [ 𝑤 ]  ∼  )  ∥  ( ( ♯ ‘ [ 𝑤 ]  ∼  )  ·  ( ♯ ‘ { 𝑣  ∈  𝑋  ∣  ( 𝑣  ⊕  𝑤 )  =  𝑤 } ) ) ) | 
						
							| 70 | 69 | adantr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑌 )  →  ( ♯ ‘ [ 𝑤 ]  ∼  )  ∥  ( ( ♯ ‘ [ 𝑤 ]  ∼  )  ·  ( ♯ ‘ { 𝑣  ∈  𝑋  ∣  ( 𝑣  ⊕  𝑤 )  =  𝑤 } ) ) ) | 
						
							| 71 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑌 )  →   ⊕   ∈  ( 𝐺  GrpAct  𝑌 ) ) | 
						
							| 72 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑌 )  →  𝑋  ∈  Fin ) | 
						
							| 73 |  | eqid | ⊢ { 𝑣  ∈  𝑋  ∣  ( 𝑣  ⊕  𝑤 )  =  𝑤 }  =  { 𝑣  ∈  𝑋  ∣  ( 𝑣  ⊕  𝑤 )  =  𝑤 } | 
						
							| 74 |  | eqid | ⊢ ( 𝐺  ~QG  { 𝑣  ∈  𝑋  ∣  ( 𝑣  ⊕  𝑤 )  =  𝑤 } )  =  ( 𝐺  ~QG  { 𝑣  ∈  𝑋  ∣  ( 𝑣  ⊕  𝑤 )  =  𝑤 } ) | 
						
							| 75 | 1 73 74 7 | orbsta2 | ⊢ ( ( (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  ∧  𝑤  ∈  𝑌 )  ∧  𝑋  ∈  Fin )  →  ( ♯ ‘ 𝑋 )  =  ( ( ♯ ‘ [ 𝑤 ]  ∼  )  ·  ( ♯ ‘ { 𝑣  ∈  𝑋  ∣  ( 𝑣  ⊕  𝑤 )  =  𝑤 } ) ) ) | 
						
							| 76 | 71 44 72 75 | syl21anc | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑌 )  →  ( ♯ ‘ 𝑋 )  =  ( ( ♯ ‘ [ 𝑤 ]  ∼  )  ·  ( ♯ ‘ { 𝑣  ∈  𝑋  ∣  ( 𝑣  ⊕  𝑤 )  =  𝑤 } ) ) ) | 
						
							| 77 | 70 76 | breqtrrd | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑌 )  →  ( ♯ ‘ [ 𝑤 ]  ∼  )  ∥  ( ♯ ‘ 𝑋 ) ) | 
						
							| 78 | 20 | simprd | ⊢ ( 𝜑  →  ∃ 𝑛  ∈  ℕ0 ( ♯ ‘ 𝑋 )  =  ( 𝑃 ↑ 𝑛 ) ) | 
						
							| 79 | 78 | adantr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑌 )  →  ∃ 𝑛  ∈  ℕ0 ( ♯ ‘ 𝑋 )  =  ( 𝑃 ↑ 𝑛 ) ) | 
						
							| 80 |  | breq2 | ⊢ ( ( ♯ ‘ 𝑋 )  =  ( 𝑃 ↑ 𝑛 )  →  ( ( ♯ ‘ [ 𝑤 ]  ∼  )  ∥  ( ♯ ‘ 𝑋 )  ↔  ( ♯ ‘ [ 𝑤 ]  ∼  )  ∥  ( 𝑃 ↑ 𝑛 ) ) ) | 
						
							| 81 | 80 | biimpcd | ⊢ ( ( ♯ ‘ [ 𝑤 ]  ∼  )  ∥  ( ♯ ‘ 𝑋 )  →  ( ( ♯ ‘ 𝑋 )  =  ( 𝑃 ↑ 𝑛 )  →  ( ♯ ‘ [ 𝑤 ]  ∼  )  ∥  ( 𝑃 ↑ 𝑛 ) ) ) | 
						
							| 82 | 81 | reximdv | ⊢ ( ( ♯ ‘ [ 𝑤 ]  ∼  )  ∥  ( ♯ ‘ 𝑋 )  →  ( ∃ 𝑛  ∈  ℕ0 ( ♯ ‘ 𝑋 )  =  ( 𝑃 ↑ 𝑛 )  →  ∃ 𝑛  ∈  ℕ0 ( ♯ ‘ [ 𝑤 ]  ∼  )  ∥  ( 𝑃 ↑ 𝑛 ) ) ) | 
						
							| 83 | 77 79 82 | sylc | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑌 )  →  ∃ 𝑛  ∈  ℕ0 ( ♯ ‘ [ 𝑤 ]  ∼  )  ∥  ( 𝑃 ↑ 𝑛 ) ) | 
						
							| 84 |  | pcprmpw2 | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( ♯ ‘ [ 𝑤 ]  ∼  )  ∈  ℕ )  →  ( ∃ 𝑛  ∈  ℕ0 ( ♯ ‘ [ 𝑤 ]  ∼  )  ∥  ( 𝑃 ↑ 𝑛 )  ↔  ( ♯ ‘ [ 𝑤 ]  ∼  )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ [ 𝑤 ]  ∼  ) ) ) ) ) | 
						
							| 85 | 42 55 84 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑌 )  →  ( ∃ 𝑛  ∈  ℕ0 ( ♯ ‘ [ 𝑤 ]  ∼  )  ∥  ( 𝑃 ↑ 𝑛 )  ↔  ( ♯ ‘ [ 𝑤 ]  ∼  )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ [ 𝑤 ]  ∼  ) ) ) ) ) | 
						
							| 86 | 83 85 | mpbid | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑌 )  →  ( ♯ ‘ [ 𝑤 ]  ∼  )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ [ 𝑤 ]  ∼  ) ) ) ) | 
						
							| 87 | 86 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑌 )  →  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ [ 𝑤 ]  ∼  ) ) )  =  ( ♯ ‘ [ 𝑤 ]  ∼  ) ) | 
						
							| 88 | 23 | adantr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑌 )  →  𝑃  ∈  ℤ ) | 
						
							| 89 | 88 | zcnd | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑌 )  →  𝑃  ∈  ℂ ) | 
						
							| 90 | 89 | exp0d | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑌 )  →  ( 𝑃 ↑ 0 )  =  1 ) | 
						
							| 91 |  | hash1 | ⊢ ( ♯ ‘ 1o )  =  1 | 
						
							| 92 | 90 91 | eqtr4di | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑌 )  →  ( 𝑃 ↑ 0 )  =  ( ♯ ‘ 1o ) ) | 
						
							| 93 | 87 92 | eqeq12d | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑌 )  →  ( ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ [ 𝑤 ]  ∼  ) ) )  =  ( 𝑃 ↑ 0 )  ↔  ( ♯ ‘ [ 𝑤 ]  ∼  )  =  ( ♯ ‘ 1o ) ) ) | 
						
							| 94 |  | df1o2 | ⊢ 1o  =  { ∅ } | 
						
							| 95 |  | snfi | ⊢ { ∅ }  ∈  Fin | 
						
							| 96 | 94 95 | eqeltri | ⊢ 1o  ∈  Fin | 
						
							| 97 |  | hashen | ⊢ ( ( [ 𝑤 ]  ∼   ∈  Fin  ∧  1o  ∈  Fin )  →  ( ( ♯ ‘ [ 𝑤 ]  ∼  )  =  ( ♯ ‘ 1o )  ↔  [ 𝑤 ]  ∼   ≈  1o ) ) | 
						
							| 98 | 52 96 97 | sylancl | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑌 )  →  ( ( ♯ ‘ [ 𝑤 ]  ∼  )  =  ( ♯ ‘ 1o )  ↔  [ 𝑤 ]  ∼   ≈  1o ) ) | 
						
							| 99 | 93 98 | bitrd | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑌 )  →  ( ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ [ 𝑤 ]  ∼  ) ) )  =  ( 𝑃 ↑ 0 )  ↔  [ 𝑤 ]  ∼   ≈  1o ) ) | 
						
							| 100 |  | en1b | ⊢ ( [ 𝑤 ]  ∼   ≈  1o  ↔  [ 𝑤 ]  ∼   =  { ∪  [ 𝑤 ]  ∼  } ) | 
						
							| 101 | 99 100 | bitrdi | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑌 )  →  ( ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ [ 𝑤 ]  ∼  ) ) )  =  ( 𝑃 ↑ 0 )  ↔  [ 𝑤 ]  ∼   =  { ∪  [ 𝑤 ]  ∼  } ) ) | 
						
							| 102 | 44 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  𝑌 )  ∧  ( ℎ  ∈  𝑋  ∧  [ 𝑤 ]  ∼   =  { ∪  [ 𝑤 ]  ∼  } ) )  →  𝑤  ∈  𝑌 ) | 
						
							| 103 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  𝑌 )  ∧  ( ℎ  ∈  𝑋  ∧  [ 𝑤 ]  ∼   =  { ∪  [ 𝑤 ]  ∼  } ) )  →   ⊕   ∈  ( 𝐺  GrpAct  𝑌 ) ) | 
						
							| 104 | 1 | gaf | ⊢ (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  →   ⊕  : ( 𝑋  ×  𝑌 ) ⟶ 𝑌 ) | 
						
							| 105 | 103 104 | syl | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  𝑌 )  ∧  ( ℎ  ∈  𝑋  ∧  [ 𝑤 ]  ∼   =  { ∪  [ 𝑤 ]  ∼  } ) )  →   ⊕  : ( 𝑋  ×  𝑌 ) ⟶ 𝑌 ) | 
						
							| 106 |  | simprl | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  𝑌 )  ∧  ( ℎ  ∈  𝑋  ∧  [ 𝑤 ]  ∼   =  { ∪  [ 𝑤 ]  ∼  } ) )  →  ℎ  ∈  𝑋 ) | 
						
							| 107 | 105 106 102 | fovcdmd | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  𝑌 )  ∧  ( ℎ  ∈  𝑋  ∧  [ 𝑤 ]  ∼   =  { ∪  [ 𝑤 ]  ∼  } ) )  →  ( ℎ  ⊕  𝑤 )  ∈  𝑌 ) | 
						
							| 108 |  | eqid | ⊢ ( ℎ  ⊕  𝑤 )  =  ( ℎ  ⊕  𝑤 ) | 
						
							| 109 |  | oveq1 | ⊢ ( 𝑘  =  ℎ  →  ( 𝑘  ⊕  𝑤 )  =  ( ℎ  ⊕  𝑤 ) ) | 
						
							| 110 | 109 | eqeq1d | ⊢ ( 𝑘  =  ℎ  →  ( ( 𝑘  ⊕  𝑤 )  =  ( ℎ  ⊕  𝑤 )  ↔  ( ℎ  ⊕  𝑤 )  =  ( ℎ  ⊕  𝑤 ) ) ) | 
						
							| 111 | 110 | rspcev | ⊢ ( ( ℎ  ∈  𝑋  ∧  ( ℎ  ⊕  𝑤 )  =  ( ℎ  ⊕  𝑤 ) )  →  ∃ 𝑘  ∈  𝑋 ( 𝑘  ⊕  𝑤 )  =  ( ℎ  ⊕  𝑤 ) ) | 
						
							| 112 | 106 108 111 | sylancl | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  𝑌 )  ∧  ( ℎ  ∈  𝑋  ∧  [ 𝑤 ]  ∼   =  { ∪  [ 𝑤 ]  ∼  } ) )  →  ∃ 𝑘  ∈  𝑋 ( 𝑘  ⊕  𝑤 )  =  ( ℎ  ⊕  𝑤 ) ) | 
						
							| 113 | 7 | gaorb | ⊢ ( 𝑤  ∼  ( ℎ  ⊕  𝑤 )  ↔  ( 𝑤  ∈  𝑌  ∧  ( ℎ  ⊕  𝑤 )  ∈  𝑌  ∧  ∃ 𝑘  ∈  𝑋 ( 𝑘  ⊕  𝑤 )  =  ( ℎ  ⊕  𝑤 ) ) ) | 
						
							| 114 | 102 107 112 113 | syl3anbrc | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  𝑌 )  ∧  ( ℎ  ∈  𝑋  ∧  [ 𝑤 ]  ∼   =  { ∪  [ 𝑤 ]  ∼  } ) )  →  𝑤  ∼  ( ℎ  ⊕  𝑤 ) ) | 
						
							| 115 |  | ovex | ⊢ ( ℎ  ⊕  𝑤 )  ∈  V | 
						
							| 116 | 115 46 | elec | ⊢ ( ( ℎ  ⊕  𝑤 )  ∈  [ 𝑤 ]  ∼   ↔  𝑤  ∼  ( ℎ  ⊕  𝑤 ) ) | 
						
							| 117 | 114 116 | sylibr | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  𝑌 )  ∧  ( ℎ  ∈  𝑋  ∧  [ 𝑤 ]  ∼   =  { ∪  [ 𝑤 ]  ∼  } ) )  →  ( ℎ  ⊕  𝑤 )  ∈  [ 𝑤 ]  ∼  ) | 
						
							| 118 |  | simprr | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  𝑌 )  ∧  ( ℎ  ∈  𝑋  ∧  [ 𝑤 ]  ∼   =  { ∪  [ 𝑤 ]  ∼  } ) )  →  [ 𝑤 ]  ∼   =  { ∪  [ 𝑤 ]  ∼  } ) | 
						
							| 119 | 117 118 | eleqtrd | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  𝑌 )  ∧  ( ℎ  ∈  𝑋  ∧  [ 𝑤 ]  ∼   =  { ∪  [ 𝑤 ]  ∼  } ) )  →  ( ℎ  ⊕  𝑤 )  ∈  { ∪  [ 𝑤 ]  ∼  } ) | 
						
							| 120 | 115 | elsn | ⊢ ( ( ℎ  ⊕  𝑤 )  ∈  { ∪  [ 𝑤 ]  ∼  }  ↔  ( ℎ  ⊕  𝑤 )  =  ∪  [ 𝑤 ]  ∼  ) | 
						
							| 121 | 119 120 | sylib | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  𝑌 )  ∧  ( ℎ  ∈  𝑋  ∧  [ 𝑤 ]  ∼   =  { ∪  [ 𝑤 ]  ∼  } ) )  →  ( ℎ  ⊕  𝑤 )  =  ∪  [ 𝑤 ]  ∼  ) | 
						
							| 122 | 48 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  𝑌 )  ∧  ( ℎ  ∈  𝑋  ∧  [ 𝑤 ]  ∼   =  { ∪  [ 𝑤 ]  ∼  } ) )  →  𝑤  ∈  [ 𝑤 ]  ∼  ) | 
						
							| 123 | 122 118 | eleqtrd | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  𝑌 )  ∧  ( ℎ  ∈  𝑋  ∧  [ 𝑤 ]  ∼   =  { ∪  [ 𝑤 ]  ∼  } ) )  →  𝑤  ∈  { ∪  [ 𝑤 ]  ∼  } ) | 
						
							| 124 | 46 | elsn | ⊢ ( 𝑤  ∈  { ∪  [ 𝑤 ]  ∼  }  ↔  𝑤  =  ∪  [ 𝑤 ]  ∼  ) | 
						
							| 125 | 123 124 | sylib | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  𝑌 )  ∧  ( ℎ  ∈  𝑋  ∧  [ 𝑤 ]  ∼   =  { ∪  [ 𝑤 ]  ∼  } ) )  →  𝑤  =  ∪  [ 𝑤 ]  ∼  ) | 
						
							| 126 | 121 125 | eqtr4d | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  𝑌 )  ∧  ( ℎ  ∈  𝑋  ∧  [ 𝑤 ]  ∼   =  { ∪  [ 𝑤 ]  ∼  } ) )  →  ( ℎ  ⊕  𝑤 )  =  𝑤 ) | 
						
							| 127 | 126 | expr | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  𝑌 )  ∧  ℎ  ∈  𝑋 )  →  ( [ 𝑤 ]  ∼   =  { ∪  [ 𝑤 ]  ∼  }  →  ( ℎ  ⊕  𝑤 )  =  𝑤 ) ) | 
						
							| 128 | 127 | ralrimdva | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑌 )  →  ( [ 𝑤 ]  ∼   =  { ∪  [ 𝑤 ]  ∼  }  →  ∀ ℎ  ∈  𝑋 ( ℎ  ⊕  𝑤 )  =  𝑤 ) ) | 
						
							| 129 | 101 128 | sylbid | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑌 )  →  ( ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ [ 𝑤 ]  ∼  ) ) )  =  ( 𝑃 ↑ 0 )  →  ∀ ℎ  ∈  𝑋 ( ℎ  ⊕  𝑤 )  =  𝑤 ) ) | 
						
							| 130 | 58 129 | syl5 | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑌 )  →  ( ( 𝑃  pCnt  ( ♯ ‘ [ 𝑤 ]  ∼  ) )  =  0  →  ∀ ℎ  ∈  𝑋 ( ℎ  ⊕  𝑤 )  =  𝑤 ) ) | 
						
							| 131 | 57 130 | sylbird | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑌 )  →  ( ¬  𝑃  ∥  ( ♯ ‘ [ 𝑤 ]  ∼  )  →  ∀ ℎ  ∈  𝑋 ( ℎ  ⊕  𝑤 )  =  𝑤 ) ) | 
						
							| 132 |  | oveq2 | ⊢ ( 𝑢  =  𝑤  →  ( ℎ  ⊕  𝑢 )  =  ( ℎ  ⊕  𝑤 ) ) | 
						
							| 133 |  | id | ⊢ ( 𝑢  =  𝑤  →  𝑢  =  𝑤 ) | 
						
							| 134 | 132 133 | eqeq12d | ⊢ ( 𝑢  =  𝑤  →  ( ( ℎ  ⊕  𝑢 )  =  𝑢  ↔  ( ℎ  ⊕  𝑤 )  =  𝑤 ) ) | 
						
							| 135 | 134 | ralbidv | ⊢ ( 𝑢  =  𝑤  →  ( ∀ ℎ  ∈  𝑋 ( ℎ  ⊕  𝑢 )  =  𝑢  ↔  ∀ ℎ  ∈  𝑋 ( ℎ  ⊕  𝑤 )  =  𝑤 ) ) | 
						
							| 136 | 135 6 | elrab2 | ⊢ ( 𝑤  ∈  𝑍  ↔  ( 𝑤  ∈  𝑌  ∧  ∀ ℎ  ∈  𝑋 ( ℎ  ⊕  𝑤 )  =  𝑤 ) ) | 
						
							| 137 | 136 | baib | ⊢ ( 𝑤  ∈  𝑌  →  ( 𝑤  ∈  𝑍  ↔  ∀ ℎ  ∈  𝑋 ( ℎ  ⊕  𝑤 )  =  𝑤 ) ) | 
						
							| 138 | 137 | adantl | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑌 )  →  ( 𝑤  ∈  𝑍  ↔  ∀ ℎ  ∈  𝑋 ( ℎ  ⊕  𝑤 )  =  𝑤 ) ) | 
						
							| 139 | 131 138 | sylibrd | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑌 )  →  ( ¬  𝑃  ∥  ( ♯ ‘ [ 𝑤 ]  ∼  )  →  𝑤  ∈  𝑍 ) ) | 
						
							| 140 | 1 2 3 4 5 6 7 | sylow2alem1 | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑍 )  →  [ 𝑤 ]  ∼   =  { 𝑤 } ) | 
						
							| 141 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑍 )  →  𝑤  ∈  𝑍 ) | 
						
							| 142 | 141 | snssd | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑍 )  →  { 𝑤 }  ⊆  𝑍 ) | 
						
							| 143 | 140 142 | eqsstrd | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑍 )  →  [ 𝑤 ]  ∼   ⊆  𝑍 ) | 
						
							| 144 | 143 | ex | ⊢ ( 𝜑  →  ( 𝑤  ∈  𝑍  →  [ 𝑤 ]  ∼   ⊆  𝑍 ) ) | 
						
							| 145 | 144 | adantr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑌 )  →  ( 𝑤  ∈  𝑍  →  [ 𝑤 ]  ∼   ⊆  𝑍 ) ) | 
						
							| 146 | 139 145 | syld | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑌 )  →  ( ¬  𝑃  ∥  ( ♯ ‘ [ 𝑤 ]  ∼  )  →  [ 𝑤 ]  ∼   ⊆  𝑍 ) ) | 
						
							| 147 | 146 | con1d | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑌 )  →  ( ¬  [ 𝑤 ]  ∼   ⊆  𝑍  →  𝑃  ∥  ( ♯ ‘ [ 𝑤 ]  ∼  ) ) ) | 
						
							| 148 | 34 41 147 | ectocld | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑌  /   ∼  ) )  →  ( ¬  𝑧  ∈  𝒫  𝑍  →  𝑃  ∥  ( ♯ ‘ 𝑧 ) ) ) | 
						
							| 149 | 148 | impr | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ( 𝑌  /   ∼  )  ∧  ¬  𝑧  ∈  𝒫  𝑍 ) )  →  𝑃  ∥  ( ♯ ‘ 𝑧 ) ) | 
						
							| 150 | 33 149 | sylan2b | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ( 𝑌  /   ∼  )  ∖  𝒫  𝑍 ) )  →  𝑃  ∥  ( ♯ ‘ 𝑧 ) ) | 
						
							| 151 | 15 23 32 150 | fsumdvds | ⊢ ( 𝜑  →  𝑃  ∥  Σ 𝑧  ∈  ( ( 𝑌  /   ∼  )  ∖  𝒫  𝑍 ) ( ♯ ‘ 𝑧 ) ) |