Metamath Proof Explorer


Theorem sylow2alem2

Description: Lemma for sylow2a . All the orbits which are not for fixed points have size | G | / | G x | (where G x is the stabilizer subgroup) and thus are powers of P . And since they are all nontrivial (because any orbit which is a singleton is a fixed point), they all divide P , and so does the sum of all of them. (Contributed by Mario Carneiro, 17-Jan-2015)

Ref Expression
Hypotheses sylow2a.x 𝑋 = ( Base ‘ 𝐺 )
sylow2a.m ( 𝜑 ∈ ( 𝐺 GrpAct 𝑌 ) )
sylow2a.p ( 𝜑𝑃 pGrp 𝐺 )
sylow2a.f ( 𝜑𝑋 ∈ Fin )
sylow2a.y ( 𝜑𝑌 ∈ Fin )
sylow2a.z 𝑍 = { 𝑢𝑌 ∣ ∀ 𝑋 ( 𝑢 ) = 𝑢 }
sylow2a.r = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝑌 ∧ ∃ 𝑔𝑋 ( 𝑔 𝑥 ) = 𝑦 ) }
Assertion sylow2alem2 ( 𝜑𝑃 ∥ Σ 𝑧 ∈ ( ( 𝑌 / ) ∖ 𝒫 𝑍 ) ( ♯ ‘ 𝑧 ) )

Proof

Step Hyp Ref Expression
1 sylow2a.x 𝑋 = ( Base ‘ 𝐺 )
2 sylow2a.m ( 𝜑 ∈ ( 𝐺 GrpAct 𝑌 ) )
3 sylow2a.p ( 𝜑𝑃 pGrp 𝐺 )
4 sylow2a.f ( 𝜑𝑋 ∈ Fin )
5 sylow2a.y ( 𝜑𝑌 ∈ Fin )
6 sylow2a.z 𝑍 = { 𝑢𝑌 ∣ ∀ 𝑋 ( 𝑢 ) = 𝑢 }
7 sylow2a.r = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝑌 ∧ ∃ 𝑔𝑋 ( 𝑔 𝑥 ) = 𝑦 ) }
8 pwfi ( 𝑌 ∈ Fin ↔ 𝒫 𝑌 ∈ Fin )
9 5 8 sylib ( 𝜑 → 𝒫 𝑌 ∈ Fin )
10 7 1 gaorber ( ∈ ( 𝐺 GrpAct 𝑌 ) → Er 𝑌 )
11 2 10 syl ( 𝜑 Er 𝑌 )
12 11 qsss ( 𝜑 → ( 𝑌 / ) ⊆ 𝒫 𝑌 )
13 9 12 ssfid ( 𝜑 → ( 𝑌 / ) ∈ Fin )
14 diffi ( ( 𝑌 / ) ∈ Fin → ( ( 𝑌 / ) ∖ 𝒫 𝑍 ) ∈ Fin )
15 13 14 syl ( 𝜑 → ( ( 𝑌 / ) ∖ 𝒫 𝑍 ) ∈ Fin )
16 gagrp ( ∈ ( 𝐺 GrpAct 𝑌 ) → 𝐺 ∈ Grp )
17 2 16 syl ( 𝜑𝐺 ∈ Grp )
18 1 pgpfi ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) → ( 𝑃 pGrp 𝐺 ↔ ( 𝑃 ∈ ℙ ∧ ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ 𝑋 ) = ( 𝑃𝑛 ) ) ) )
19 17 4 18 syl2anc ( 𝜑 → ( 𝑃 pGrp 𝐺 ↔ ( 𝑃 ∈ ℙ ∧ ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ 𝑋 ) = ( 𝑃𝑛 ) ) ) )
20 3 19 mpbid ( 𝜑 → ( 𝑃 ∈ ℙ ∧ ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ 𝑋 ) = ( 𝑃𝑛 ) ) )
21 20 simpld ( 𝜑𝑃 ∈ ℙ )
22 prmz ( 𝑃 ∈ ℙ → 𝑃 ∈ ℤ )
23 21 22 syl ( 𝜑𝑃 ∈ ℤ )
24 eldifi ( 𝑧 ∈ ( ( 𝑌 / ) ∖ 𝒫 𝑍 ) → 𝑧 ∈ ( 𝑌 / ) )
25 5 adantr ( ( 𝜑𝑧 ∈ ( 𝑌 / ) ) → 𝑌 ∈ Fin )
26 12 sselda ( ( 𝜑𝑧 ∈ ( 𝑌 / ) ) → 𝑧 ∈ 𝒫 𝑌 )
27 26 elpwid ( ( 𝜑𝑧 ∈ ( 𝑌 / ) ) → 𝑧𝑌 )
28 25 27 ssfid ( ( 𝜑𝑧 ∈ ( 𝑌 / ) ) → 𝑧 ∈ Fin )
29 24 28 sylan2 ( ( 𝜑𝑧 ∈ ( ( 𝑌 / ) ∖ 𝒫 𝑍 ) ) → 𝑧 ∈ Fin )
30 hashcl ( 𝑧 ∈ Fin → ( ♯ ‘ 𝑧 ) ∈ ℕ0 )
31 29 30 syl ( ( 𝜑𝑧 ∈ ( ( 𝑌 / ) ∖ 𝒫 𝑍 ) ) → ( ♯ ‘ 𝑧 ) ∈ ℕ0 )
32 31 nn0zd ( ( 𝜑𝑧 ∈ ( ( 𝑌 / ) ∖ 𝒫 𝑍 ) ) → ( ♯ ‘ 𝑧 ) ∈ ℤ )
33 eldif ( 𝑧 ∈ ( ( 𝑌 / ) ∖ 𝒫 𝑍 ) ↔ ( 𝑧 ∈ ( 𝑌 / ) ∧ ¬ 𝑧 ∈ 𝒫 𝑍 ) )
34 eqid ( 𝑌 / ) = ( 𝑌 / )
35 sseq1 ( [ 𝑤 ] = 𝑧 → ( [ 𝑤 ] 𝑍𝑧𝑍 ) )
36 velpw ( 𝑧 ∈ 𝒫 𝑍𝑧𝑍 )
37 35 36 bitr4di ( [ 𝑤 ] = 𝑧 → ( [ 𝑤 ] 𝑍𝑧 ∈ 𝒫 𝑍 ) )
38 37 notbid ( [ 𝑤 ] = 𝑧 → ( ¬ [ 𝑤 ] 𝑍 ↔ ¬ 𝑧 ∈ 𝒫 𝑍 ) )
39 fveq2 ( [ 𝑤 ] = 𝑧 → ( ♯ ‘ [ 𝑤 ] ) = ( ♯ ‘ 𝑧 ) )
40 39 breq2d ( [ 𝑤 ] = 𝑧 → ( 𝑃 ∥ ( ♯ ‘ [ 𝑤 ] ) ↔ 𝑃 ∥ ( ♯ ‘ 𝑧 ) ) )
41 38 40 imbi12d ( [ 𝑤 ] = 𝑧 → ( ( ¬ [ 𝑤 ] 𝑍𝑃 ∥ ( ♯ ‘ [ 𝑤 ] ) ) ↔ ( ¬ 𝑧 ∈ 𝒫 𝑍𝑃 ∥ ( ♯ ‘ 𝑧 ) ) ) )
42 21 adantr ( ( 𝜑𝑤𝑌 ) → 𝑃 ∈ ℙ )
43 11 adantr ( ( 𝜑𝑤𝑌 ) → Er 𝑌 )
44 simpr ( ( 𝜑𝑤𝑌 ) → 𝑤𝑌 )
45 43 44 erref ( ( 𝜑𝑤𝑌 ) → 𝑤 𝑤 )
46 vex 𝑤 ∈ V
47 46 46 elec ( 𝑤 ∈ [ 𝑤 ] 𝑤 𝑤 )
48 45 47 sylibr ( ( 𝜑𝑤𝑌 ) → 𝑤 ∈ [ 𝑤 ] )
49 48 ne0d ( ( 𝜑𝑤𝑌 ) → [ 𝑤 ] ≠ ∅ )
50 11 ecss ( 𝜑 → [ 𝑤 ] 𝑌 )
51 5 50 ssfid ( 𝜑 → [ 𝑤 ] ∈ Fin )
52 51 adantr ( ( 𝜑𝑤𝑌 ) → [ 𝑤 ] ∈ Fin )
53 hashnncl ( [ 𝑤 ] ∈ Fin → ( ( ♯ ‘ [ 𝑤 ] ) ∈ ℕ ↔ [ 𝑤 ] ≠ ∅ ) )
54 52 53 syl ( ( 𝜑𝑤𝑌 ) → ( ( ♯ ‘ [ 𝑤 ] ) ∈ ℕ ↔ [ 𝑤 ] ≠ ∅ ) )
55 49 54 mpbird ( ( 𝜑𝑤𝑌 ) → ( ♯ ‘ [ 𝑤 ] ) ∈ ℕ )
56 pceq0 ( ( 𝑃 ∈ ℙ ∧ ( ♯ ‘ [ 𝑤 ] ) ∈ ℕ ) → ( ( 𝑃 pCnt ( ♯ ‘ [ 𝑤 ] ) ) = 0 ↔ ¬ 𝑃 ∥ ( ♯ ‘ [ 𝑤 ] ) ) )
57 42 55 56 syl2anc ( ( 𝜑𝑤𝑌 ) → ( ( 𝑃 pCnt ( ♯ ‘ [ 𝑤 ] ) ) = 0 ↔ ¬ 𝑃 ∥ ( ♯ ‘ [ 𝑤 ] ) ) )
58 oveq2 ( ( 𝑃 pCnt ( ♯ ‘ [ 𝑤 ] ) ) = 0 → ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ [ 𝑤 ] ) ) ) = ( 𝑃 ↑ 0 ) )
59 hashcl ( [ 𝑤 ] ∈ Fin → ( ♯ ‘ [ 𝑤 ] ) ∈ ℕ0 )
60 51 59 syl ( 𝜑 → ( ♯ ‘ [ 𝑤 ] ) ∈ ℕ0 )
61 60 nn0zd ( 𝜑 → ( ♯ ‘ [ 𝑤 ] ) ∈ ℤ )
62 ssrab2 { 𝑣𝑋 ∣ ( 𝑣 𝑤 ) = 𝑤 } ⊆ 𝑋
63 ssfi ( ( 𝑋 ∈ Fin ∧ { 𝑣𝑋 ∣ ( 𝑣 𝑤 ) = 𝑤 } ⊆ 𝑋 ) → { 𝑣𝑋 ∣ ( 𝑣 𝑤 ) = 𝑤 } ∈ Fin )
64 4 62 63 sylancl ( 𝜑 → { 𝑣𝑋 ∣ ( 𝑣 𝑤 ) = 𝑤 } ∈ Fin )
65 hashcl ( { 𝑣𝑋 ∣ ( 𝑣 𝑤 ) = 𝑤 } ∈ Fin → ( ♯ ‘ { 𝑣𝑋 ∣ ( 𝑣 𝑤 ) = 𝑤 } ) ∈ ℕ0 )
66 64 65 syl ( 𝜑 → ( ♯ ‘ { 𝑣𝑋 ∣ ( 𝑣 𝑤 ) = 𝑤 } ) ∈ ℕ0 )
67 66 nn0zd ( 𝜑 → ( ♯ ‘ { 𝑣𝑋 ∣ ( 𝑣 𝑤 ) = 𝑤 } ) ∈ ℤ )
68 dvdsmul1 ( ( ( ♯ ‘ [ 𝑤 ] ) ∈ ℤ ∧ ( ♯ ‘ { 𝑣𝑋 ∣ ( 𝑣 𝑤 ) = 𝑤 } ) ∈ ℤ ) → ( ♯ ‘ [ 𝑤 ] ) ∥ ( ( ♯ ‘ [ 𝑤 ] ) · ( ♯ ‘ { 𝑣𝑋 ∣ ( 𝑣 𝑤 ) = 𝑤 } ) ) )
69 61 67 68 syl2anc ( 𝜑 → ( ♯ ‘ [ 𝑤 ] ) ∥ ( ( ♯ ‘ [ 𝑤 ] ) · ( ♯ ‘ { 𝑣𝑋 ∣ ( 𝑣 𝑤 ) = 𝑤 } ) ) )
70 69 adantr ( ( 𝜑𝑤𝑌 ) → ( ♯ ‘ [ 𝑤 ] ) ∥ ( ( ♯ ‘ [ 𝑤 ] ) · ( ♯ ‘ { 𝑣𝑋 ∣ ( 𝑣 𝑤 ) = 𝑤 } ) ) )
71 2 adantr ( ( 𝜑𝑤𝑌 ) → ∈ ( 𝐺 GrpAct 𝑌 ) )
72 4 adantr ( ( 𝜑𝑤𝑌 ) → 𝑋 ∈ Fin )
73 eqid { 𝑣𝑋 ∣ ( 𝑣 𝑤 ) = 𝑤 } = { 𝑣𝑋 ∣ ( 𝑣 𝑤 ) = 𝑤 }
74 eqid ( 𝐺 ~QG { 𝑣𝑋 ∣ ( 𝑣 𝑤 ) = 𝑤 } ) = ( 𝐺 ~QG { 𝑣𝑋 ∣ ( 𝑣 𝑤 ) = 𝑤 } )
75 1 73 74 7 orbsta2 ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑤𝑌 ) ∧ 𝑋 ∈ Fin ) → ( ♯ ‘ 𝑋 ) = ( ( ♯ ‘ [ 𝑤 ] ) · ( ♯ ‘ { 𝑣𝑋 ∣ ( 𝑣 𝑤 ) = 𝑤 } ) ) )
76 71 44 72 75 syl21anc ( ( 𝜑𝑤𝑌 ) → ( ♯ ‘ 𝑋 ) = ( ( ♯ ‘ [ 𝑤 ] ) · ( ♯ ‘ { 𝑣𝑋 ∣ ( 𝑣 𝑤 ) = 𝑤 } ) ) )
77 70 76 breqtrrd ( ( 𝜑𝑤𝑌 ) → ( ♯ ‘ [ 𝑤 ] ) ∥ ( ♯ ‘ 𝑋 ) )
78 20 simprd ( 𝜑 → ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ 𝑋 ) = ( 𝑃𝑛 ) )
79 78 adantr ( ( 𝜑𝑤𝑌 ) → ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ 𝑋 ) = ( 𝑃𝑛 ) )
80 breq2 ( ( ♯ ‘ 𝑋 ) = ( 𝑃𝑛 ) → ( ( ♯ ‘ [ 𝑤 ] ) ∥ ( ♯ ‘ 𝑋 ) ↔ ( ♯ ‘ [ 𝑤 ] ) ∥ ( 𝑃𝑛 ) ) )
81 80 biimpcd ( ( ♯ ‘ [ 𝑤 ] ) ∥ ( ♯ ‘ 𝑋 ) → ( ( ♯ ‘ 𝑋 ) = ( 𝑃𝑛 ) → ( ♯ ‘ [ 𝑤 ] ) ∥ ( 𝑃𝑛 ) ) )
82 81 reximdv ( ( ♯ ‘ [ 𝑤 ] ) ∥ ( ♯ ‘ 𝑋 ) → ( ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ 𝑋 ) = ( 𝑃𝑛 ) → ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ [ 𝑤 ] ) ∥ ( 𝑃𝑛 ) ) )
83 77 79 82 sylc ( ( 𝜑𝑤𝑌 ) → ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ [ 𝑤 ] ) ∥ ( 𝑃𝑛 ) )
84 pcprmpw2 ( ( 𝑃 ∈ ℙ ∧ ( ♯ ‘ [ 𝑤 ] ) ∈ ℕ ) → ( ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ [ 𝑤 ] ) ∥ ( 𝑃𝑛 ) ↔ ( ♯ ‘ [ 𝑤 ] ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ [ 𝑤 ] ) ) ) ) )
85 42 55 84 syl2anc ( ( 𝜑𝑤𝑌 ) → ( ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ [ 𝑤 ] ) ∥ ( 𝑃𝑛 ) ↔ ( ♯ ‘ [ 𝑤 ] ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ [ 𝑤 ] ) ) ) ) )
86 83 85 mpbid ( ( 𝜑𝑤𝑌 ) → ( ♯ ‘ [ 𝑤 ] ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ [ 𝑤 ] ) ) ) )
87 86 eqcomd ( ( 𝜑𝑤𝑌 ) → ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ [ 𝑤 ] ) ) ) = ( ♯ ‘ [ 𝑤 ] ) )
88 23 adantr ( ( 𝜑𝑤𝑌 ) → 𝑃 ∈ ℤ )
89 88 zcnd ( ( 𝜑𝑤𝑌 ) → 𝑃 ∈ ℂ )
90 89 exp0d ( ( 𝜑𝑤𝑌 ) → ( 𝑃 ↑ 0 ) = 1 )
91 hash1 ( ♯ ‘ 1o ) = 1
92 90 91 eqtr4di ( ( 𝜑𝑤𝑌 ) → ( 𝑃 ↑ 0 ) = ( ♯ ‘ 1o ) )
93 87 92 eqeq12d ( ( 𝜑𝑤𝑌 ) → ( ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ [ 𝑤 ] ) ) ) = ( 𝑃 ↑ 0 ) ↔ ( ♯ ‘ [ 𝑤 ] ) = ( ♯ ‘ 1o ) ) )
94 df1o2 1o = { ∅ }
95 snfi { ∅ } ∈ Fin
96 94 95 eqeltri 1o ∈ Fin
97 hashen ( ( [ 𝑤 ] ∈ Fin ∧ 1o ∈ Fin ) → ( ( ♯ ‘ [ 𝑤 ] ) = ( ♯ ‘ 1o ) ↔ [ 𝑤 ] ≈ 1o ) )
98 52 96 97 sylancl ( ( 𝜑𝑤𝑌 ) → ( ( ♯ ‘ [ 𝑤 ] ) = ( ♯ ‘ 1o ) ↔ [ 𝑤 ] ≈ 1o ) )
99 93 98 bitrd ( ( 𝜑𝑤𝑌 ) → ( ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ [ 𝑤 ] ) ) ) = ( 𝑃 ↑ 0 ) ↔ [ 𝑤 ] ≈ 1o ) )
100 en1b ( [ 𝑤 ] ≈ 1o ↔ [ 𝑤 ] = { [ 𝑤 ] } )
101 99 100 bitrdi ( ( 𝜑𝑤𝑌 ) → ( ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ [ 𝑤 ] ) ) ) = ( 𝑃 ↑ 0 ) ↔ [ 𝑤 ] = { [ 𝑤 ] } ) )
102 44 adantr ( ( ( 𝜑𝑤𝑌 ) ∧ ( 𝑋 ∧ [ 𝑤 ] = { [ 𝑤 ] } ) ) → 𝑤𝑌 )
103 2 ad2antrr ( ( ( 𝜑𝑤𝑌 ) ∧ ( 𝑋 ∧ [ 𝑤 ] = { [ 𝑤 ] } ) ) → ∈ ( 𝐺 GrpAct 𝑌 ) )
104 1 gaf ( ∈ ( 𝐺 GrpAct 𝑌 ) → : ( 𝑋 × 𝑌 ) ⟶ 𝑌 )
105 103 104 syl ( ( ( 𝜑𝑤𝑌 ) ∧ ( 𝑋 ∧ [ 𝑤 ] = { [ 𝑤 ] } ) ) → : ( 𝑋 × 𝑌 ) ⟶ 𝑌 )
106 simprl ( ( ( 𝜑𝑤𝑌 ) ∧ ( 𝑋 ∧ [ 𝑤 ] = { [ 𝑤 ] } ) ) → 𝑋 )
107 105 106 102 fovrnd ( ( ( 𝜑𝑤𝑌 ) ∧ ( 𝑋 ∧ [ 𝑤 ] = { [ 𝑤 ] } ) ) → ( 𝑤 ) ∈ 𝑌 )
108 eqid ( 𝑤 ) = ( 𝑤 )
109 oveq1 ( 𝑘 = → ( 𝑘 𝑤 ) = ( 𝑤 ) )
110 109 eqeq1d ( 𝑘 = → ( ( 𝑘 𝑤 ) = ( 𝑤 ) ↔ ( 𝑤 ) = ( 𝑤 ) ) )
111 110 rspcev ( ( 𝑋 ∧ ( 𝑤 ) = ( 𝑤 ) ) → ∃ 𝑘𝑋 ( 𝑘 𝑤 ) = ( 𝑤 ) )
112 106 108 111 sylancl ( ( ( 𝜑𝑤𝑌 ) ∧ ( 𝑋 ∧ [ 𝑤 ] = { [ 𝑤 ] } ) ) → ∃ 𝑘𝑋 ( 𝑘 𝑤 ) = ( 𝑤 ) )
113 7 gaorb ( 𝑤 ( 𝑤 ) ↔ ( 𝑤𝑌 ∧ ( 𝑤 ) ∈ 𝑌 ∧ ∃ 𝑘𝑋 ( 𝑘 𝑤 ) = ( 𝑤 ) ) )
114 102 107 112 113 syl3anbrc ( ( ( 𝜑𝑤𝑌 ) ∧ ( 𝑋 ∧ [ 𝑤 ] = { [ 𝑤 ] } ) ) → 𝑤 ( 𝑤 ) )
115 ovex ( 𝑤 ) ∈ V
116 115 46 elec ( ( 𝑤 ) ∈ [ 𝑤 ] 𝑤 ( 𝑤 ) )
117 114 116 sylibr ( ( ( 𝜑𝑤𝑌 ) ∧ ( 𝑋 ∧ [ 𝑤 ] = { [ 𝑤 ] } ) ) → ( 𝑤 ) ∈ [ 𝑤 ] )
118 simprr ( ( ( 𝜑𝑤𝑌 ) ∧ ( 𝑋 ∧ [ 𝑤 ] = { [ 𝑤 ] } ) ) → [ 𝑤 ] = { [ 𝑤 ] } )
119 117 118 eleqtrd ( ( ( 𝜑𝑤𝑌 ) ∧ ( 𝑋 ∧ [ 𝑤 ] = { [ 𝑤 ] } ) ) → ( 𝑤 ) ∈ { [ 𝑤 ] } )
120 115 elsn ( ( 𝑤 ) ∈ { [ 𝑤 ] } ↔ ( 𝑤 ) = [ 𝑤 ] )
121 119 120 sylib ( ( ( 𝜑𝑤𝑌 ) ∧ ( 𝑋 ∧ [ 𝑤 ] = { [ 𝑤 ] } ) ) → ( 𝑤 ) = [ 𝑤 ] )
122 48 adantr ( ( ( 𝜑𝑤𝑌 ) ∧ ( 𝑋 ∧ [ 𝑤 ] = { [ 𝑤 ] } ) ) → 𝑤 ∈ [ 𝑤 ] )
123 122 118 eleqtrd ( ( ( 𝜑𝑤𝑌 ) ∧ ( 𝑋 ∧ [ 𝑤 ] = { [ 𝑤 ] } ) ) → 𝑤 ∈ { [ 𝑤 ] } )
124 46 elsn ( 𝑤 ∈ { [ 𝑤 ] } ↔ 𝑤 = [ 𝑤 ] )
125 123 124 sylib ( ( ( 𝜑𝑤𝑌 ) ∧ ( 𝑋 ∧ [ 𝑤 ] = { [ 𝑤 ] } ) ) → 𝑤 = [ 𝑤 ] )
126 121 125 eqtr4d ( ( ( 𝜑𝑤𝑌 ) ∧ ( 𝑋 ∧ [ 𝑤 ] = { [ 𝑤 ] } ) ) → ( 𝑤 ) = 𝑤 )
127 126 expr ( ( ( 𝜑𝑤𝑌 ) ∧ 𝑋 ) → ( [ 𝑤 ] = { [ 𝑤 ] } → ( 𝑤 ) = 𝑤 ) )
128 127 ralrimdva ( ( 𝜑𝑤𝑌 ) → ( [ 𝑤 ] = { [ 𝑤 ] } → ∀ 𝑋 ( 𝑤 ) = 𝑤 ) )
129 101 128 sylbid ( ( 𝜑𝑤𝑌 ) → ( ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ [ 𝑤 ] ) ) ) = ( 𝑃 ↑ 0 ) → ∀ 𝑋 ( 𝑤 ) = 𝑤 ) )
130 58 129 syl5 ( ( 𝜑𝑤𝑌 ) → ( ( 𝑃 pCnt ( ♯ ‘ [ 𝑤 ] ) ) = 0 → ∀ 𝑋 ( 𝑤 ) = 𝑤 ) )
131 57 130 sylbird ( ( 𝜑𝑤𝑌 ) → ( ¬ 𝑃 ∥ ( ♯ ‘ [ 𝑤 ] ) → ∀ 𝑋 ( 𝑤 ) = 𝑤 ) )
132 oveq2 ( 𝑢 = 𝑤 → ( 𝑢 ) = ( 𝑤 ) )
133 id ( 𝑢 = 𝑤𝑢 = 𝑤 )
134 132 133 eqeq12d ( 𝑢 = 𝑤 → ( ( 𝑢 ) = 𝑢 ↔ ( 𝑤 ) = 𝑤 ) )
135 134 ralbidv ( 𝑢 = 𝑤 → ( ∀ 𝑋 ( 𝑢 ) = 𝑢 ↔ ∀ 𝑋 ( 𝑤 ) = 𝑤 ) )
136 135 6 elrab2 ( 𝑤𝑍 ↔ ( 𝑤𝑌 ∧ ∀ 𝑋 ( 𝑤 ) = 𝑤 ) )
137 136 baib ( 𝑤𝑌 → ( 𝑤𝑍 ↔ ∀ 𝑋 ( 𝑤 ) = 𝑤 ) )
138 137 adantl ( ( 𝜑𝑤𝑌 ) → ( 𝑤𝑍 ↔ ∀ 𝑋 ( 𝑤 ) = 𝑤 ) )
139 131 138 sylibrd ( ( 𝜑𝑤𝑌 ) → ( ¬ 𝑃 ∥ ( ♯ ‘ [ 𝑤 ] ) → 𝑤𝑍 ) )
140 1 2 3 4 5 6 7 sylow2alem1 ( ( 𝜑𝑤𝑍 ) → [ 𝑤 ] = { 𝑤 } )
141 simpr ( ( 𝜑𝑤𝑍 ) → 𝑤𝑍 )
142 141 snssd ( ( 𝜑𝑤𝑍 ) → { 𝑤 } ⊆ 𝑍 )
143 140 142 eqsstrd ( ( 𝜑𝑤𝑍 ) → [ 𝑤 ] 𝑍 )
144 143 ex ( 𝜑 → ( 𝑤𝑍 → [ 𝑤 ] 𝑍 ) )
145 144 adantr ( ( 𝜑𝑤𝑌 ) → ( 𝑤𝑍 → [ 𝑤 ] 𝑍 ) )
146 139 145 syld ( ( 𝜑𝑤𝑌 ) → ( ¬ 𝑃 ∥ ( ♯ ‘ [ 𝑤 ] ) → [ 𝑤 ] 𝑍 ) )
147 146 con1d ( ( 𝜑𝑤𝑌 ) → ( ¬ [ 𝑤 ] 𝑍𝑃 ∥ ( ♯ ‘ [ 𝑤 ] ) ) )
148 34 41 147 ectocld ( ( 𝜑𝑧 ∈ ( 𝑌 / ) ) → ( ¬ 𝑧 ∈ 𝒫 𝑍𝑃 ∥ ( ♯ ‘ 𝑧 ) ) )
149 148 impr ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝑌 / ) ∧ ¬ 𝑧 ∈ 𝒫 𝑍 ) ) → 𝑃 ∥ ( ♯ ‘ 𝑧 ) )
150 33 149 sylan2b ( ( 𝜑𝑧 ∈ ( ( 𝑌 / ) ∖ 𝒫 𝑍 ) ) → 𝑃 ∥ ( ♯ ‘ 𝑧 ) )
151 15 23 32 150 fsumdvds ( 𝜑𝑃 ∥ Σ 𝑧 ∈ ( ( 𝑌 / ) ∖ 𝒫 𝑍 ) ( ♯ ‘ 𝑧 ) )