| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simplr |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) → 𝐴 ∈ ℕ ) |
| 2 |
1
|
nnnn0d |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) → 𝐴 ∈ ℕ0 ) |
| 3 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
| 4 |
3
|
ad2antrr |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) → 𝑃 ∈ ℕ ) |
| 5 |
|
pccl |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) → ( 𝑃 pCnt 𝐴 ) ∈ ℕ0 ) |
| 6 |
5
|
adantr |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) → ( 𝑃 pCnt 𝐴 ) ∈ ℕ0 ) |
| 7 |
4 6
|
nnexpcld |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∈ ℕ ) |
| 8 |
7
|
nnnn0d |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∈ ℕ0 ) |
| 9 |
6
|
nn0red |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) → ( 𝑃 pCnt 𝐴 ) ∈ ℝ ) |
| 10 |
9
|
leidd |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) → ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐴 ) ) |
| 11 |
|
simpll |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) → 𝑃 ∈ ℙ ) |
| 12 |
6
|
nn0zd |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) → ( 𝑃 pCnt 𝐴 ) ∈ ℤ ) |
| 13 |
|
pcid |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 pCnt 𝐴 ) ∈ ℤ ) → ( 𝑃 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) = ( 𝑃 pCnt 𝐴 ) ) |
| 14 |
11 12 13
|
syl2anc |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) → ( 𝑃 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) = ( 𝑃 pCnt 𝐴 ) ) |
| 15 |
10 14
|
breqtrrd |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) → ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) ) |
| 16 |
15
|
ad2antrr |
⊢ ( ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 = 𝑃 ) → ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) ) |
| 17 |
|
simpr |
⊢ ( ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 = 𝑃 ) → 𝑝 = 𝑃 ) |
| 18 |
17
|
oveq1d |
⊢ ( ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 = 𝑃 ) → ( 𝑝 pCnt 𝐴 ) = ( 𝑃 pCnt 𝐴 ) ) |
| 19 |
17
|
oveq1d |
⊢ ( ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 = 𝑃 ) → ( 𝑝 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) = ( 𝑃 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) ) |
| 20 |
16 18 19
|
3brtr4d |
⊢ ( ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 = 𝑃 ) → ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) ) |
| 21 |
|
simplrr |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) ∧ 𝑝 ∈ ℙ ) → 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) |
| 22 |
|
prmz |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℤ ) |
| 23 |
22
|
adantl |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) ∧ 𝑝 ∈ ℙ ) → 𝑝 ∈ ℤ ) |
| 24 |
1
|
adantr |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) ∧ 𝑝 ∈ ℙ ) → 𝐴 ∈ ℕ ) |
| 25 |
24
|
nnzd |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) ∧ 𝑝 ∈ ℙ ) → 𝐴 ∈ ℤ ) |
| 26 |
|
simprl |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) → 𝑛 ∈ ℕ0 ) |
| 27 |
4 26
|
nnexpcld |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) → ( 𝑃 ↑ 𝑛 ) ∈ ℕ ) |
| 28 |
27
|
adantr |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑃 ↑ 𝑛 ) ∈ ℕ ) |
| 29 |
28
|
nnzd |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑃 ↑ 𝑛 ) ∈ ℤ ) |
| 30 |
|
dvdstr |
⊢ ( ( 𝑝 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ ( 𝑃 ↑ 𝑛 ) ∈ ℤ ) → ( ( 𝑝 ∥ 𝐴 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) → 𝑝 ∥ ( 𝑃 ↑ 𝑛 ) ) ) |
| 31 |
23 25 29 30
|
syl3anc |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 ∥ 𝐴 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) → 𝑝 ∥ ( 𝑃 ↑ 𝑛 ) ) ) |
| 32 |
21 31
|
mpan2d |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ∥ 𝐴 → 𝑝 ∥ ( 𝑃 ↑ 𝑛 ) ) ) |
| 33 |
|
simpr |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) ∧ 𝑝 ∈ ℙ ) → 𝑝 ∈ ℙ ) |
| 34 |
11
|
adantr |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) ∧ 𝑝 ∈ ℙ ) → 𝑃 ∈ ℙ ) |
| 35 |
|
simplrl |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) ∧ 𝑝 ∈ ℙ ) → 𝑛 ∈ ℕ0 ) |
| 36 |
|
prmdvdsexpr |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0 ) → ( 𝑝 ∥ ( 𝑃 ↑ 𝑛 ) → 𝑝 = 𝑃 ) ) |
| 37 |
33 34 35 36
|
syl3anc |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ∥ ( 𝑃 ↑ 𝑛 ) → 𝑝 = 𝑃 ) ) |
| 38 |
32 37
|
syld |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ∥ 𝐴 → 𝑝 = 𝑃 ) ) |
| 39 |
38
|
necon3ad |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ≠ 𝑃 → ¬ 𝑝 ∥ 𝐴 ) ) |
| 40 |
39
|
imp |
⊢ ( ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≠ 𝑃 ) → ¬ 𝑝 ∥ 𝐴 ) |
| 41 |
|
simplr |
⊢ ( ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≠ 𝑃 ) → 𝑝 ∈ ℙ ) |
| 42 |
1
|
ad2antrr |
⊢ ( ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≠ 𝑃 ) → 𝐴 ∈ ℕ ) |
| 43 |
|
pceq0 |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ ) → ( ( 𝑝 pCnt 𝐴 ) = 0 ↔ ¬ 𝑝 ∥ 𝐴 ) ) |
| 44 |
41 42 43
|
syl2anc |
⊢ ( ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≠ 𝑃 ) → ( ( 𝑝 pCnt 𝐴 ) = 0 ↔ ¬ 𝑝 ∥ 𝐴 ) ) |
| 45 |
40 44
|
mpbird |
⊢ ( ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≠ 𝑃 ) → ( 𝑝 pCnt 𝐴 ) = 0 ) |
| 46 |
7
|
ad2antrr |
⊢ ( ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≠ 𝑃 ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∈ ℕ ) |
| 47 |
41 46
|
pccld |
⊢ ( ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≠ 𝑃 ) → ( 𝑝 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) ∈ ℕ0 ) |
| 48 |
47
|
nn0ge0d |
⊢ ( ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≠ 𝑃 ) → 0 ≤ ( 𝑝 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) ) |
| 49 |
45 48
|
eqbrtrd |
⊢ ( ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≠ 𝑃 ) → ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) ) |
| 50 |
20 49
|
pm2.61dane |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) ) |
| 51 |
50
|
ralrimiva |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) → ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) ) |
| 52 |
1
|
nnzd |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) → 𝐴 ∈ ℤ ) |
| 53 |
7
|
nnzd |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∈ ℤ ) |
| 54 |
|
pc2dvds |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∈ ℤ ) → ( 𝐴 ∥ ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ↔ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) ) ) |
| 55 |
52 53 54
|
syl2anc |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) → ( 𝐴 ∥ ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ↔ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) ) ) |
| 56 |
51 55
|
mpbird |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) → 𝐴 ∥ ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) |
| 57 |
|
pcdvds |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∥ 𝐴 ) |
| 58 |
57
|
adantr |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∥ 𝐴 ) |
| 59 |
|
dvdseq |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∈ ℕ0 ) ∧ ( 𝐴 ∥ ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∧ ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∥ 𝐴 ) ) → 𝐴 = ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) |
| 60 |
2 8 56 58 59
|
syl22anc |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) → 𝐴 = ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) |
| 61 |
60
|
rexlimdvaa |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) → ( ∃ 𝑛 ∈ ℕ0 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) → 𝐴 = ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) ) |
| 62 |
3
|
adantr |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) → 𝑃 ∈ ℕ ) |
| 63 |
62 5
|
nnexpcld |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∈ ℕ ) |
| 64 |
63
|
nnzd |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∈ ℤ ) |
| 65 |
|
iddvds |
⊢ ( ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∈ ℤ → ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∥ ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) |
| 66 |
64 65
|
syl |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∥ ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) |
| 67 |
|
oveq2 |
⊢ ( 𝑛 = ( 𝑃 pCnt 𝐴 ) → ( 𝑃 ↑ 𝑛 ) = ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) |
| 68 |
67
|
breq2d |
⊢ ( 𝑛 = ( 𝑃 pCnt 𝐴 ) → ( ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∥ ( 𝑃 ↑ 𝑛 ) ↔ ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∥ ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) ) |
| 69 |
68
|
rspcev |
⊢ ( ( ( 𝑃 pCnt 𝐴 ) ∈ ℕ0 ∧ ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∥ ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) → ∃ 𝑛 ∈ ℕ0 ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∥ ( 𝑃 ↑ 𝑛 ) ) |
| 70 |
5 66 69
|
syl2anc |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) → ∃ 𝑛 ∈ ℕ0 ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∥ ( 𝑃 ↑ 𝑛 ) ) |
| 71 |
|
breq1 |
⊢ ( 𝐴 = ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) → ( 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ↔ ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∥ ( 𝑃 ↑ 𝑛 ) ) ) |
| 72 |
71
|
rexbidv |
⊢ ( 𝐴 = ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) → ( ∃ 𝑛 ∈ ℕ0 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ↔ ∃ 𝑛 ∈ ℕ0 ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∥ ( 𝑃 ↑ 𝑛 ) ) ) |
| 73 |
70 72
|
syl5ibrcom |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) → ( 𝐴 = ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) → ∃ 𝑛 ∈ ℕ0 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) ) |
| 74 |
61 73
|
impbid |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) → ( ∃ 𝑛 ∈ ℕ0 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ↔ 𝐴 = ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) ) |